
Every Good Key Must Be A Model Of The Lock It Opens

(The Conant & Ashby Theorem Revisited)

By

Daniel L. Scholten

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 2 of 45

Table of Contents
Introduction..3
Finding Good Regulators: A Search Algorithm...6

The Search Algorithm, Formally Stated...12
Working Through An Example...16
Finding Excellent Approximations to Ideal Good-Regulator Models..24
Real-World Applications: Goals for Future Research...24

Even Decent Regulators Must Be Models ...26
A Law of Requisite Back-Up Plans..28
Ashby’s First Law: The Any-Port-In-A-Storm Theorem..29
Every Good Solution Must Be A Model Of The Problem It Solves........................35
Conclusion..40

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 3 of 45

Introduction

The title of the present paper is really a metaphor for what might have been a more
literal title:

Every Good Solution Must be a Model of the Problem it Solves.

It is also a metaphor for the so-called “Conant and Ashby Theorem” referred to in
the sub-title. That theorem – published in 1970 by Roger C. Conant and W. Ross
Ashby – establishes that,

Every Good Regulator of a System Must be a Model of that System. 1

What all of this means, more or less, is that the pursuit of a goal by some dynamic
agent (Regulator) in the face of a source of obstacles (System) places at least one
particular and unavoidable demand on that agent, which is that the agent's behaviors
must be executed in such a reliable and predictable way that they can serve as a
representation (Model) of that source of obstacles. As a refinement to this paraphrase,
we could specify that the particular style of pursuit be both optimal and maximally
simple, where “optimal” means that the actualized goal is as close as possible to its
ideal form given the circumstances, and “maximally simple” means that the agent is
achieving this “best-attainable” goal without unnecessary expense or effort.

A careful reading of Conant and Ashby's paper2 reveals a distinction that can be
made between such an idealized “good-regulator model”, which is really a dynamic
entity, and its “technical specification”, which we might call its control-model.
Another distinction to be recognized is that whereas the good-regulator model is
dynamic, the control-model may be either static or dynamic. As an example of a
static control-model, consider an inexperienced cook attempting to make a roast duck
with the help of a recipe. In this case, the system to be regulated consists of the
various ingredients and kitchen tools to be used to create the meal, the dynamic good-
regulator model is the human being doing the cooking, and the recipe is what we are
calling the static “control-model”. The recipe is a control-model because the human
being uses it, like a technical specification, to guide (control) his behavior and thus to
“turn himself into” (i.e. to act as-if he were) a good-regulator model. As an example
of a dynamic control-model, consider the case in which a child learns to use an
idiomatic expression such as “two wrongs don't make a right” by overhearing an adult
use that expression in a conversation. In this case the system to be regulated is a

1Roger C. Conant and W. Ross Ashby, “Every Good Regulator of a System Must be a Model of that
System,” International Journal of Systems Science, 1970, vol 1., No. 2, 89-97.
2“A Primer For The Conant And Ashby Theorem”, Available on the internet at
www.goodregulatorproject.org.

Copyright 2009-2010 by Daniel L. Scholten

http://www.goodregulatorproject.org/

Every Good Key Must Be A Model Of The Lock It Opens Page 4 of 45

particular portion of some conversation in which the child is participating, the
dynamic good-regulator model is the child, and the dynamic control-model is the adult
role-model. The idea here is that the adult's behavior serves as a type of dynamic
technical specification that the child then uses to control his or her own behavior in the
context of the given conversation.

It is important to make these distinctions between a dynamic good-regulator model
and its static or dynamic technical specification because otherwise the theorem appears
to prove that the technical specification (control-model) is necessary, which is really a
misunderstanding of the theorem. The theorem only proves that the good-regulator
model is necessary, although it does appear to be an empirical fact that such technical
specifications are also necessary, or at least extremely useful.

One objective of the present paper is to offer the key-lock and solution-problem
formulations as useful metaphorical equivalents to this important result by Conant &
Ashby (henceforth C&A). But the present paper’s primary objective is to explore a
line of inquiry that this theorem establishes, and which, as far as I can tell, has yet to
be explored.

In what follows, I will show how C&A's “good-regulator theorem”, despite being
just one of potentially various necessary conditions to successful regulation, has yet a
great deal more to say about the nature of these idealized good-regulator models3. In
particular, I will show that the theorem points the way to a search-algorithm (of the
type used in the field of Operations Research) that can be implemented by a computer
program4 and used to find excellent approximations to these idealized entities given
certain high-level measurements taken on the system in question and the resources
available to regulate that system5. Furthermore, the analysis leading to this search
algorithm will also lead us to an alternate proof of the C&A theorem which is both
more general and allows us to assert that “Even A Decent Regulator Of A System
Must Be A Model Of That System”. This more general theorem has two primary
benefits. First of all, however valuable or interesting a true good-regulator model
might be, any realistic scenario has such an astronomically large search-space that
finding such unicorns is a truly rare occurrence. Much more likely is the discovery of
a decent approximation to the beast, and this more general version of Conant and
Ashby's theorem allows us to include these much more common “decent-regulator
models” in our discussions of actual good-regulator models. The second benefit is that
the proof of this more general version of the good-regulator theorem is substantially
easier for a lay-person to understand, mainly because it doesn’t rely on the Shannon
Entropy function. Such a simpler proof should go a long way toward making this
important theorem accessible to a much wider audience.

In addition to these two primary results, I will also examine a number of related
results. One of these is a corollary which we might call a “Law of Requisite Back-Up
Plans” the gist of which tells us that a good-regulator must have its priorities straight.

3 http://en.wikipedia.org/wiki/Good_Regulator
4 This program is currently in development.
5If the System to be regulated and the available regulatory resources are not too complicated, then the
search algorithm will actually find the associated ideal good-regulator models. The problem is that most
real-world applications will probably involve Systems that do not fulfil this simplicity criterion.

Copyright 2009-2010 by Daniel L. Scholten

http://en.wikipedia.org/wiki/Good_Regulator

Every Good Key Must Be A Model Of The Lock It Opens Page 5 of 45

This corollary establishes that a good-regulator must know, given a set of possible
outcomes, which of these is its favorite, which is its second favorite, and so on, all the
way through to its least favorite outcome. As it pertains to us humans, it tells us,
contrary to what we might like to think, that our most lofty aspirations are not more
important than what we will do if we fail to attain them. And I will also discuss a
principle that I have come to think of as Ashby’s First Law, or perhaps, the Any-Port-
In-A-Storm Theorem. This result appears to explain a great deal of human behavior,
especially our tendency to sanctify and ferociously defend even the most delusional
ideas. The gist of Ashby’s First Law is that any model is better than no model at all,
which basically means that even if we can’t figure out the truth of a situation, we are
almost always better off just making up any old thing rather than muddling around in
the muck of our own ignorance. If you have ever wondered how a person could
believe so seriously in, say, faeries or werewolves, to the point where they are willing
to hurt themselves or someone else, Ashby’s First Law may provide a meaningful
clue. Finally, I will also discuss two useful metaphors for the C&A theorem, namely
the key-lock and solution-problem metaphors referred to above and in this paper’s
title. This latter metaphor, in particular, casts the C&A Theorem as a fundamental
theorem of problem solving and as such shows us how to make meaningful progress
toward the solution of any problem whatsoever.

After discussing these topics, I will turn to a question that is grounded in the
observation that the C&A Theorem is itself a control-model (technical specification)
for a good-regulator model. The system to be regulated in this case is nothing other
than the system of good- and decent-regulator models that we humans are using more
and more to regulate our interactions with each other and the world. Recognition of
this fact raises the question as to why the C&A theorem is not more famous than it is.
Given the preponderance of control-models that are used by humans (the evidence for
this preponderance will be surveyed in the latter part of the paper), and especially
given the obvious need to regulate that system, one might guess that the C&A theorem
would be at least as famous as, say, the Pythagorean Theorem (2 2 2a b c+ =), the
Einstein mass-energy equivalence (2E mc= , which can be seen on T-shirts and
bumper stickers), or the DNA double helix (which actually shows up in TV crime
dramas and movies about super heroes). And yet, it would appear that relatively few
lay-persons have ever even heard of C&A’s important prerequisite to successful
regulation. This state-of-affairs strikes the present author as a problem in need of a
solution, a lock that needs a key. It is my hope that the present paper can contribute to
finding that key.

Note: throughout the following discussion I will assume that the reader has studied
Conant &Ashby’s original paper, possesses the level of technical competence required
to understand their proof, and is familiar with the components of the basic model that
they used to prove their theorem, e.g. the payoff matrix, the outcome mapping

: R S Zψ × → , and the definition of regulation in terms of the Shannon entropy
function, etc. If the current reader does not already fit this profile but would like to, he
or she is invited to study the references in the footnote at the end of this sentence.6

6 The reference to the original paper can be found in a previous footnote. The paper is also readily
available on the internet at http://pespmc1.vub.ac.be/Books/Conant_Ashby.pdf. Everything you need to

Copyright 2009-2010 by Daniel L. Scholten

http://pespmc1.vub.ac.be/Books/Conant_Ashby.pdf

Every Good Key Must Be A Model Of The Lock It Opens Page 6 of 45

Finding Good Regulators: A Search Algorithm

In order to motivate the present discussion, we will use a concrete example which is
organized around the following “payoff” matrix:

1 2 3 4 5 6

1

2

3

4

s s s s s s
r a h d g b h
r c f i e c d
r f d e b a i
r a d c e a f

ψ

The above matrix represents every possible outcome that can occur when a behavior
from some system with behavioral repertoire { }1 2 3 4 5 6, , , , ,S s s s s s s= combines with a

behavior from some other system with behavioral repertoire { }1 2 3 4, , ,R r r r r= to

produce outcomes from a set { }, , , , , , , , Z a b c d e f g h i= , as determined by the
mapping : R S Zψ × → .

In addition, we assume that S is executing its behaviors according to some
probability distribution () () () () () (){ }1 2 3 4 5 6() , , , , ,=p S p s p s p s p s p s p s that R is
responding to these behaviors according to some conditional distribution

() (){ }| | : ,p R S p r s r R s S= ∈ ∈ and that together these two distributions determine,

via the rule () () (), |i j i j jp r s p r s p s= , the following distribution for Z :

()

() () () () ()
() () ()
() () () ()
() () () () ()
() () () ()
() () () ()
() ()
() () ()
() () ()

1 1 3 5 4 1 4 5

1 5 3 4

2 1 2 5 4 3

1 3 2 6 3 2 4 2

2 4 3 3 4 4

2 2 3 1 4 6

1 4

1 2 1 6

2 3 3 6

, , , , ,

, , ,

, , , ,

, , , , ,

, , , ,

, , , ,

, ,

, , ,

, ,

p a p r s p r s p r s p r s

p b p r s p r s

p c p r s p r s p r s

p d p r s p r s p r s p r s

p Z p e p r s p r s p r s

p f p r s p r s p r s

p g p r s

p h p r s p r s

p i p r s p r s

 = + + +

= +

= + +

= + + +

= = + +
= + +

=

= +

= +

learn about the Shannon entropy function in order to understand C & A’s proof can be acquired by reading
the first 26 pages (especially problem 1.6) of Information Theory, by Robert B. Ash, 1990 (1965), Dover
Publications, New York. For a self-contained exposition, the reader can also consult the present author’s
A Primer For The Conant & Ashby Theorem available at www.goodregulatorproject.org.

Copyright 2009-2010 by Daniel L. Scholten

http://www.goodregulatorproject.org/

Every Good Key Must Be A Model Of The Lock It Opens Page 7 of 45

Also, we can use the above distribution to calculate the Shannon Entropy associated

with the outcomes of Z , which is given by () () ()log
z Z

H Z p z p z
∈

≡ − ∑ .

Furthermore, we will assume, given any example such as the one we are
considering, that the distribution ()p S has been given to us as a set of fixed
probabilities over which we have no control, and that, on the contrary, we have
complete freedom to set the conditional probabilities of ()|p R S to any values we
choose. And finally, we will assume that the goal of regulator design is to set these
conditional probabilities of ()|p R S so that ()H Z is made as small as possible,
given the constraints imposed by the mapping : R S Zψ × → , in which case, the
regulator is said to be optimal.

Now, given only these assumptions, we can observe that in the most general case,
the task of finding a regulator (i.e. a distribution ()|p R S) that will minimize ()H Z
is daunting indeed. The problem is that the solution space, even for a relatively simple
example such as the one we are considering, is nothing short of huge. If all we have is
the option of grinding through every possible distribution

() (){ }| | : ,p R S p r s r R s S= ∈ ∈ then the search space is infinite and the task is
impossible. What we need is some way to reduce the search space.

In their 1970 paper, C & A showed the world how to cut that search space down to a
much more manageable size. In particular, they showed us a lemma (henceforth, the
C&A lemma) which tells us that whenever R is behaving so that ()H Z is as small as
possible, then it must be the case that R is picking out exactly one outcome per
column of the table. In other words, their lemma establishes that optimal regulation
can only occur via some sort of mapping from the set S to the set Z . Note that C&A
chose to define model in terms of just such a mapping and we will continue with that
convention here, although this particular “model” is not the one referred to in the title
of their paper and, in fact, the whole purpose of regulation is make this “model” an
especially poor one. The idea here is that the regulator acts as a buffer between the
system and the outcomes produced, so that the outcomes become a lousy
representation of the system. Let’s call the mapping that creates this poor “underdog”
model of the system :u S Z→ , where “u” stands for “underdog”.

C&A then went on to show that by adding the economically reasonable assumption
that R should achieve as simply as possible its one outcome per column – meaning
that in response to a given column js S∈ the same jr R∈ is always executed in order
to produce that column’s unique outcome – then yet a different mapping would be
established from S to R , which we will refer to here as :g S R→ (“g” for “good
regulator”). It is this latter mapping that creates the model referred to by the C&A
theorem – the model that is the “good regulator” of the system being regulated.
Contrary to the relatively poor “underdog” model referred to in the previous

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 8 of 45

paragraph, this good-regulator model will tend to be a fairly detailed representation of
the system.

Now, without plugging in some actual numbers for ()p S , we really can’t say much
else about the example under consideration, but let’s just imagine that there is some
example we could use for ()p S such that the following mapping :u S Z→ will
minimize ()H Z :

1 2 3 4 5 6s s s s s s
u a d d b a d↓

The implication of this mapping is that the probability distribution ()p Z is a much
simpler function of just the column probabilities of ()p S . Let’s illustrate this by
working through an example. Referring to the table for ()p Z above, we have that:

() () () () ()1 1 3 5 4 1 4 5, , , ,p a p r s p r s p r s p r s= + + +

or

() () () () () () () () ()1 1 1 3 5 5 4 1 1 4 5 5| | | |p a p r s p s p r s p s p r s p s p r s p s= + + +

or

() () () () () () ()1 1 4 1 1 3 5 4 5 5| | | |p a p r s p r s p s p r s p r s p s = + + +

So far, ()p a appears to be a function of both ()p S and (|)p R S . But the mapping
:u S Z→ implies that we, as regulator designers, have respected the following

constraint on ()|p R S :

() ()1 1 4 1| | 1p r s p r s+ = and () ()3 5 4 5| | 1p r s p r s+ = , which, in turn, means that,

() () ()1 5 1 51 () 1 ()p a p s p s p s p s= ⋅ + ⋅ = + .

The reader can verify that performing this sort of analysis for each element in Z for
our chosen example yields the following:

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 9 of 45

()

() () ()
() ()
()
() () () ()
()
()
()
()
()

1 5

4

2 3 6

,

,

0,

0,

0,

0,

0,

0

p a p s p s

p b p s

p c

p d p s p s p s

p Z p e

p f

p g

p h

p i

 = +

=
 =
 = + + = =
 =
 =
 =

=

Now, we can make two observations about this state-of-affairs. I will make them
here with respect to our current example, but similar observations can be made in
general about every such example. These are as follows:

1. Because the probabilities in the distribution ()p Z are real numbers, they
have a natural ordering. That is, there is a way to rename the elements in the
set Z using indexes such that { }1 2 9, ,...,Z z z z= and

() () ()1 2 9...p z p z p z≥ ≥ ≥ . To put it most generally, we can say that there
is a mapping from the set Z to the set of natural numbers (excluding zero),

let’s call it 1:f Z → ¥ , such that { }1 2, ,..., ZZ z z z= and

() () ()1 2 ... Zp z p z p z≥ ≥ ≥ .

2. The probability ()p b does not use up all of the “column probability” that it
might use. That is, since the outcome b is available in both columns 4s as
well as 5s , it might have been the case that () () ()4 5p b p s p s= + , but this
did not happen. For some reason, our optimal regulator preferred to give the
column probability ()5p s to outcome a instead of to outcome b.

This natural ordering of the outcome probabilities coupled with the observation that
an optimal regulator behaves as if it preferred some outcomes over others, suggests
that at we can jump to the following conclusion:

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 10 of 45

When all is said and done and we have managed to find an
optimal regulator (i.e., a ()|p R S that minimizes ()H Z),
then the behavior of this optimal regulator will accord with
at least one “preference ranking” on the outcomes in Z .
Although there may be many such preference rankings, one
of these is the mapping 1:f Z → ¥ that is determined by
the natural ordering of the probabilities in ()P Z . Finally,
this preference ranking is logically equivalent to the
optimal regulator, which means that they both produce
exactly the same outcomes and thus exactly the same
minimized value of ()H Z .

Now, I say that we can jump to this conclusion, but it really needs to be proven. The
proof relies on the following lemma which uses the same “useful property” of the
Shannon Entropy function that C&A used to prove their lemma:

Given some : R S Zψ × → and a ()|p R S that minimizes
()H Z , if kz is the outcome selected for column js , and if

hz is any other outcome in the column js , then
() ()k hp z p z> .

Proof: Suppose to the contrary that () ()k hp z p z≤ . Then

we can change ()|p R S so that hz is selected for column

js instead. Doing so will increase the difference
() ()h kp z p z− and thus reduce ()H Z thus contradicting

our assumption that ()H Z is a minimum. The
contradiction proves the result.

In order to prove the main proposition under consideration, we have to show that the
mapping 1:f Z → ¥ produces exactly the same outcomes as the distribution ()|p R S
that minimized the entropy function. This has to be proven because even though a
minimized ()H Z implies 1:f Z → ¥ , it is conceivable that 1:f Z → ¥ doesn’t
“return the favor”. That is, perhaps we are dealing with a simple one-way material
conditional and not a material bi-conditional.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 11 of 45

To accomplish this proof, consider an arbitrary js S∈ and suppose that kz is the
outcome produced by ()|p R S . If hz is any other available outcome in js , we know

(by the lemma proven above) that () ()k hp z p z> which means that our preference
ranking favors kz over hz . Since js S∈ was assumed to be arbitrary, such a result
will hold for every column of the table which means that our preference ranking will
produce exactly the same outcomes as ()|p R S . This establishes the result.

Now, how does all of this translate into a search algorithm? To see how, we observe
that the existence of this preference ranking implies that ()1p z (the largest of all the
probabilities in ()p Z) is the sum of all of the column probabilities associated with the
outcome 1z . That is, whenever 1z is available in some column js , then ()jp s is

included as an addend in the sum for ()1p z . Yet another way to put it is that ()1p z
“gobbles up” all of the column probabilities that are available to produce the outcome

1z . Likewise, ()2p z “gobbles up” whatever is leftover for 2z , and so on until nothing
is left for the remaining outcomes and everybody else gets nothing. This means that
we can begin our search for an optimal regulator by creating a table of these “total
probabilities” for each possible outcome in Z and then trying to identify which of
these total probabilities is really our ()1p z . That’s the first step in the search. For the
next step we adjust our table, removing from consideration the column probabilities
that were used to calculate ()1p z , and then try to identify which of the remaining total

probabilities is ()2p z and so forth until there aren’t any column probabilities left to
use.

Now, in each step I say we proceed by “trying to identify” which total probability is
the next in the sequence. This raises the question of the best way to accomplish this.
There are two intuitively appealing approaches to this problem, and although they are
both useful heuristics, it turns out that neither works in all cases. These are as follows:

1. At each step in the process, choose the outcome with the greatest total
probability available.

2. At each step in the process, choose the outcome that occupies the greatest
number of columns.

I have written a computer program that compares both of these approaches to a
brute-force exhaustive search of the solution space for relatively small tables (e.g.

5R = , 7S = and 12Z =) and I have also tried various ways to combine them both
and the upshot is that it appears that the only way to always find the real minimum for

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 12 of 45

()H Z is just to check every path7. This can still be quite a large search space, but it is
substantially less than the brute-force approach. Furthermore, if we organize that
search by always beginning with the outcome with the greatest total probability, and
then proceeding at each level with the next largest, and then the next largest, and so
forth, we greatly increase the chances of encountering the solution sooner rather than
later. This approach has the added benefit of being easily convertible to a very useful
search heuristic and I have found experimentally that limiting the search to the first
two of these (largest and next largest probability) captures very close to every case, at
least for the relatively small tables that I have tested8.

The Search Algorithm, Formally Stated
The purpose of the preceding discussion is to motivate and to illustrate the gist and

justification of a formal search algorithm for the identification of the underdog
mapping(s) :u S Z→ that minimize(s) ()H Z . This algorithm, which can be
implemented in any high-level programming language (I have used Java), consists of
three steps: an initialization step, an iterato-recursive step, and a completion step. I
will now present the complete and formal details of this algorithm. Unfortunately, the
completeness and formality of these details might appear at first glance as something
of a pedagogical quagmire. Therefore, the reader is encouraged to skim over these
details for the time being and then read back over them more carefully as we work
through an illustrative example. I assure you that the following algorithm is no where
near as complicated as it may look:

1. Initialization: this step takes as input the information contained in the payoff
matrix : R S Zψ × → as well as the distribution ()p S and uses it to

construct a data structure that we will call ()Total - Probability - Set (the
meaning of the empty parentheses will be explained in step 2.b.ii), which
will be used as the initial input to the iterato-recursive process of step (2).
The construction of ()Total - Probability - Set is accomplished as follows:

a. For each outcome element z Z∈ , calculate ()totp z , i.e. the “total
probability available to the outcome z ”, as follows: for each s S∈ ,
examine the contents of the corresponding column in the payoff
matrix ψ to determine if the outcome z is available in that column.

7 Strictly speaking there are ways to eliminate a few additional paths, but I’m trying to summarize the gist
of the process at this point; these refinements will be covered shortly. In any case, it may be that these
refinements won’t enhance the performance of a computer program that implements them to a degree that
would justify the additional complexity that they add to such a program.
8 I have to restrict my tests to relatively small tables because my “control population” is generated with a
brute-force, every-possible-combination algorithm and if the tables get too big, the time required to run
through all of these possibilities becomes too long.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 13 of 45

If it is available, then include ()p s as an addend in the sum for
()totp z .

b. Place each of these total-probability elements in an ordered set,
sorted top to bottom from largest to smallest. These can be indexed
as () ,0tot j

p z , for { }1,2,3,...j ∈ , where () 1,0totp z is the largest,

() 2,0totp z the second largest, etc. This descending-ordered set of
total-probability elements is what we are calling

()Total - Probability - Set .

2. Iterato-Recursive process: the goal of this process is to produce a list of
values for ()H Z which are candidates for the smallest possible such value,
which will be determined in (3), the completion step, below. Toward this
end, various distributions for ()p Z are calculated, which are in turn used to

calculate the values for ()H Z . I’m calling this an iterato-recursive process
because it is comprised of an iterative process that occurs within a larger
recursive process. By definition, a recursive process is any process that
includes an execution of itself, which creates a sequence of recursion-levels.
We will refer to these as the 1st recursion-level, 2nd recursion-level, etc., and
in the general case, the kth recursion-level. Furthermore, within each of these
recursion-levels occurs an iterative process that performs an identical set of
operations over a sequence of distinct elements (to be explained
momentarily). We will index these as element1,k, element2,k, etc., and in the
general case, elementj,k, where the index k indicates the recursion-level inside
of which these iterations are performed.

Now, the input to the kth recursion-level, which we will call
()1 2 1, ,..., kTotal - Probability - Set j j j − (the sequence 1 2 1, ,..., kj j j − will be

explained in step 2.b.ii) is either the output from step (1) (i.e.
()Total - Probability - Set) or else the output from the (k-1)th recursion

level. On the other hand, the output from the kth recursion-level is either a
value for ()H Z , or else a value for ()kp z along with

()1 2, ,..., kTotal - Probability - Set j j j , where the method used to produce
this latter Total-Probability-Set is explained below in sub-step 2.b.ii. To
begin this iterato-recursive process, the input

()1 2 1, ,..., kTotal - Probability - Set j j j − is first examined to see if it contains
any non-zero total-probability elements (where the fact that it might will be
explained in sub-step 2.b.ii). The answer to this question determines which
of the following is executed:

a. If the input ()1 2 1, ,..., kTotal - Probability - Set j j j − contains no non-
zero total-probability elements the process has reached the end of a

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 14 of 45

search-path. In this case the distribution ()p Z is complete and is

used to calculate a value for ()H Z which is stored in a list, which
will later become the input to the completion step (3, below). After
calculating and storing the value for ()H Z , the process returns to the
(k-1)th recursion level where it resumes its iterations on sub-step
(2.b).

b. If the input ()1 2 1, ,..., kTotal - Probability - Set j j j − is found to
contain at least one non-zero total-probability element, then two tasks
(i and ii, explained below) are executed for each non-zero total-
probability element in ()1 2 1, ,..., kTotal - Probability - Set j j j − ,

beginning first with the largest such element, i.e. () 1, 1tot k
p z

− , and

proceeding to the second largest, i.e. () 2, 1tot k
p z

− and so forth. These
are the “elements”, referred to above, that are processed iteratively
and which are indexed in general as () , 1tot j k

p z
− . Note that the

elements with value of zero are excluded. When both of tasks i and ii
have been performed for each such non-zero total-probability
element, the kth recursion level is deemed completed and the process
returns to the (k-1)th recursion level where it resumes its iterations on
sub-step (2.b) at that level.

Now, the two tasks that are performed in each iteration are as
follows:

i. On the (j,k)th iteration, the outcome z that is associated with
() , 1tot j k

p z
− is assigned the index k, meaning that ()kp z is

assigned the value () , 1tot j k
p z

− . The significance of this is that

() , 1tot j k
p z

− is assumed to be the kth largest probability in a

distribution ()p Z that will be used to calculate the smallest

value for ()H Z . Whether this assumption will turn out to be
correct will be tested below in the completion step (3). This
value for ()kp z is stored in a list that represents ()p Z
which, when complete, will be used as input into sub-step
(2.a).

ii. Next, the process produces
()1 2, ,..., kTotal - Probability - Set j j j and sends it as input

into the (k+1)th recursion-level. Note that the invocation of
the (k+1)th recursion-level temporarily interrupts the iterative
process occurring on the kth recursion-level, but this kth

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 15 of 45

recursion-level iterative process will be resumed upon
completion of the (k+1)th recursion-level.

Now, regarding the production of
()1 2, ,..., kTotal - Probability - Set j j j , this is accomplished

by first making a clone (copy) of
()1 2 1, ,..., kTotal - Probability - Set j j j − and then deleting the

total-probability element () , 1tot j k
p z

− that was used in sub-

step (2.b.i) as the candidate for kz . Next, the remaining total-
probability elements are adjusted by removing from each of
their respective summations, any of the column probabilities
that were used to calculate () , 1tot j k

p z
− . Finally, the remaining

total-probability elements are sorted, top to bottom, from
largest to smallest, re-indexed to reflect both the new
ordering and the kth recursion-level, and this freshly
processed, reorganized “clone” is then renamed

()1 2, ,..., kTotal - Probability - Set j j j .

Now it is time to explain the meaning of the sequence
1 2, ,..., kj j j . You may have noticed that it gets longer with

each recursion-level, which is to say that the index k tracks
these recursion-levels. On the other hand, the variable ij
tracks the iteration that was interrupted in order to begin the
(i+1)th recursion-level. Thus, for example,

()3,4,2Total - Probability - Set is the input to the 4th

recursion-level, and was produced after interrupting,
respectively, the 3rd iteration of the 1st recursion-level, the 4th

iteration of the 2nd recursion-level, and the 2nd iteration of the
3rd recursion-level. This will become clearer as we work
through a couple of specific examples, below.

3. Completion: In this step the list of ()H Z values that were produced by sub-
step (2.b) is searched for the smallest (minimized) value. The identification
of this smallest value for ()H Z completes the algorithm.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 16 of 45

Working Through An Example
The completeness and formality of the above presentation of this algorithm may

have left the reader feeling a little baffled as to just how it works. As I said, it’s really
not as complicated as it might appear. The following example should go a long way
toward illustrating its fundamental simplicity and efficacy.

We will continue with the illustrative example used earlier, e.g. the payoff matrix
: R S Zψ × → and the distribution ()p S , reproduced here:

1 2 3 4 5 6

1

2

3

4

s s s s s s
r a h d g b h
r c f i e c d
r f d e b a i
r a d c e a f

ψ

() () () () () (){ }1 2 3 4 5 6() , , , , ,P S p s p s p s p s p s p s=

And in order to make the following discussion more concrete, we will arbitrarily
assign the following numbers to the probabilities in ()P S as follows:

()

()
()
()
()
()
()

1

2

3

4

5

6

0.05,

0.20,

0.15,

0.10,

0.30,

0.20

p s

p s

p s
p S

p s

p s

p s

 =

=
 = =

=
 =
 =

The three steps of the algorithm are applied as follows:

Initialization Step:

1. For each element z Z∈ , calculate ()totp z , i.e. the sum of all of the column
probabilities that are available to that element and list these with appropriate
(j,0) indexes in a descending-ordered table to be called

()Total - Probability - Set . For our chosen example, the table we would
create would be the following:

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 17 of 45

()
() () () ()
() () () ()
() () () ()
() () ()
() () ()
()

2 3 61,0

1 3 52.0

1 2 63,0

1 54,0

4 55,0

6,0

0.20 0.15 0.20 0.55,

0.05 0.15 0.30 0.50,

0.05 0.20 0.20 0.45,

0.05 0.30 0.35,

0.10 0.30 0.40,

Total Probability Set

p d p s p s p s

p c p s p s p s

p f p s p s p s

p a p s p s

p b p s p s

p h p

− −

= + + = + + =

= + + = + + =

= + + = + + =

= + = + =

= + = + =

= () ()
() () ()
() () ()
() ()

2 6

2 67,0

3 48,0

49,0

0.20 0.20 0.40,

0.20 0.20 0.40,

0.15 0.10 0.25,

0.10,

s p s

p i p s p s

p e p s p s

p g p s

+ = + =

= + = + =

= + = + =

= =

The above table is our initial input into the subsequent iterato-recursive
process.

Iterato-Recursive Process:

2. First, as instructed by the algorithm, we examine ()Total - Probability - Set
to see if it contains any non-zero total-probability elements, which it clearly
does (the alternative is trivial and wouldn’t have made a very good
illustrative example). Thus we execute sub-step (2.b) of the algorithm by
performing tasks 2.b.i and 2.b.ii over each of the non-zero total-probability
elements in ()Total - Probability - Set , beginning with the largest at the top
of the list and working our way down. We will not walk through each of
these iterations here because they will combine multiplicatively with the
iterations in subsequent recursion-levels and produce, needless to say, far too
many examples than we actually need to illustrate the algorithm. But we
will begin with at least the first which is () 1,0

p d . Task 2.b.i requires that we

set 1z d= and () ()1 1,0
0.55p z p d= = , which is to say that we hypothesize

that ()H Z will be minimized with a distribution ()p Z in which
() ()1 1,0

0.55p z p d= = . At this point this is only a hypothesis, although in
the tests I have done with relatively small tables it turns out to be true in the
large majority of cases. The whole purpose of the search algorithm,
however, is to find all of the cases and this can only be done by checking all
of the relevant candidates, hence the iterative part of this step.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 18 of 45

Next, we store this hypothesized value for ()1p z in a list, e.g.

() (){ }1 0.55,....p Z p z= = , and proceed with task 2.b.ii. In this task we

make a clone (copy) of ()Total - Probability - Set , delete () 1,0
p d and

adjust the remaining total-probability elements by removing from their
respective summations any column probability that was used in the sum for

() 1,0
p d , i.e. ()2 0.20p s = , ()3 0.15p s = and ()6 0.20p s = . Then we re-

index and re-sort the total-probability elements, re-name the clone to
()1Total - Probability - Set , and finally we interrupt the 1st recursion-level’s

iteration and invoke the 2nd recursion-level, using
()1Total - Probability - Set as the input.

Let’s walk through this one step at a time. First we make the clone:

()
() () () ()
() () () ()
() () () ()
() () ()
() () ()

2 3 61,0

1 3 52.0

1 2 63,0

1 54,0

4 55,0

 (clone)

0.20 0.15 0.20 0.55,

0.05 0.15 0.30 0.50,

0.05 0.20 0.20 0.45,

0.05 0.30 0.35,

0.10 0.30 0.40

Total Probability Set

p d p s p s p s

p c p s p s p s

p f p s p s p s

p a p s p s

p b p s p s

− −

= + + = + + =

= + + = + + =

= + + = + + =

= + = + =

= + = + =

() () ()
() () ()
() () ()
() ()

2 66,0

2 67,0

3 48,0

49,0

,

0.20 0.20 0.40,

0.20 0.20 0.40,

0.15 0.10 0.25,

0.10,

p h p s p s

p i p s p s

p e p s p s

p g p s

= + = + =

= + = + =

= + = + =

= =

Now we delete () 1,0
p d from the clone, and remove the column probabilities

()2 0.20p s = , ()3 0.15p s = and ()6 0.20p s = from where ever else they
appear in the clone, which gives us:

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 19 of 45

()
() () ()
() ()
() () ()
() () ()
()
()
() ()
() ()

1 52.0

13,0

1 54,0

4 55,0

6,0

7,0

48,0

49,0

 (clone, partially adjusted)

0.05 0.30 0.35,

0.05,

0.05 0.30 0.35,

0.10 0.30 0.40,

0,

0,

0.10,

0.10,

Total Probability Set

p c p s p s

p f p s

p a p s p s

p b p s p s

p h

p i

p e p s

p g p s

− −

= + = + =

= =

= + = + =

= + = + =

=

=

= =

= =

Now we re-sort and re-index the total-probability elements that remain in
the clone and re-name the clone to ()1Total - Probability - Set , thus:

()
() () ()
() () ()
() () ()
() ()
() ()
() ()
()
()

4 51,1

1 52.1

1 53,1

44,1

45,1

16,1

7,1

8,1

1

0.10 0.30 0.40,

0.05 0.30 0.35,

0.05 0.30 0.35,

0.10,

0.10,

0.05,

0,

0,

Total Probability Set

p b p s p s

p c p s p s

p a p s p s

p e p s

p g p s

p f p s

p h

p i

− −

= + = + =

= + = + =

= + = + =

= =

= =

= =

=

=

Note that the ()1 suffixed to the name of this Total-Probability-Set indicates
that it was created as input to the 2nd recursion-level by interrupting the 1st

iteration of the 1st recursion-level.

3. Now, we interrupt the iterative process of the 1st recursion-level and begin
the 2nd recursion-level using ()1Total - Probability - Set as the input. (Note
that if we were to walk through all of the iterations at each recursion-level
then we would resume the 1st recursion-level iterative process only when the
2nd recursion-level has been completed). Because it contains non-zero total-
probability elements this means we execute step (2.b), iterating, as we are in

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 20 of 45

the process of doing for the 1st recursion-level, from the top to the bottom of
the elements in ()1Total - Probability - Set . Thus, we begin the 2nd

recursion-level’s iterative process with () 1,1
p b and hypothesize that 2z b=

and thus that () ()2 1,1
0.40p z p b= = . Thus, again, we are assuming that

()H Z will be minimized with a distribution ()p Z in which
() ()2 1,1

0.40p z p b= = . As we did in the 1st recursion-level, we store this

hypothesized value for ()2p z in the list

() () (){ }1 20.55, 0.40,....p Z p z p z= = = .

In task (2.b.ii) we make a clone (copy) of ()1Total - Probability - Set , delete
() 1,1

p b and adjust the remaining total-probability elements by removing
from their respective summations any column probability that was used in
the sum for () 1,1

p b , i.e. ()4 0.10p s = and ()5 0.30p s = . Then we re-index
and re-sort the total-probability elements, re-name the clone to

()1,1Total - Probability - Set , and finally we interrupt the 2nd recursion-
level’s iterative process and invoke the 3rd recursion-level, using as input

()1,1Total - Probability - Set which (the reader can check) appears as
follows:

()
() ()
() ()
() ()
()
()
()
()

11,2

12.2

13,2

4,2

5,2

6,2

7,2

1,1

0.05,

0.05,

0.05,

0,

0,

0,

0,

Total Probability Set

p a p s

p c p s

p f p s

p e

p g

p h

p i

− −

= =

= =

= =

=

=

=

=

4. Because ()1,1Total - Probability - Set has non-zero total-probability
elements we initiate the iterative process beginning with

() ()11,2
0.05p a p s= = . This means that we set 3z a= and

() ()3 1,2
0.05p z p a= = . Also, we store this information in the list (which is

now a complete probability distribution since its elements sum to unity):

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 21 of 45

() () () (){ }1 2 30.55, 0.40, 0.05p Z p z p z p z= = = =

Next we clone ()1,1Total - Probability - Set and use it to make
()1,1,1Total - Probability - Set , which (the reader should check) appears as

follows:

()
()
()
()
()
()
()

1.3

2,3

3,3

4,3

5,3

6,3

1,1,1

0,

0,

0,

0,

0,

0,

Total Probability Set

p c

p f

p e

p g

p h

p i

− −

=

=

=

=

=

=

5. Now we interrupt the 3rd recursion-level’s iterative process and use
()1,1,1Total - Probability - Set as input to the 4th recursion-level. This time

we see that there are no non-zero total-probability elements, which means we
execute step (2.a). In other words, we have come to the end of our current
search path, as also indicated by the previously noted fact that ()p Z is a

complete probability distribution, and we can now use ()p Z to calculate a

value for ()H Z . This value is calculated thus:

() () () () () () ()2 2 20.55 log 0.55 0.40 log 0.40 0.05 log 0.05 1.219241H Z = + + ≈

As I mentioned earlier, as far as I have been able to ascertain there is really
no way to know if this is the absolute minimum value for the entropy that
could be attained for the given example. In this example we have completed
just one of many possible search paths, and in order to know if the value
obtained above is really the minimum, all of these paths have to be explored
and the resulting candidate values for ()H Z must be compared in order to
determine the true minimum. The search algorithm detailed above will
accomplish exactly that, and it will do so much more quickly than a brute-
force approach. On the other hand, in the simulations I have run with
relatively small tables, this first value has most often turned out to be the
minimum, and when it isn’t, it’s very close to the actual minimum. Thus,
the search-algorithm presented here is easily converted to a search heuristic,
simply by limiting the number of iterations performed at each recursion-
level. In the example we just completed we performed just one iteration per

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 22 of 45

recursion-level. However, for the sake of illustration, let’s quickly walk
through another.

6. Step (2.a) now requires that we store the value that we calculated for ()H Z
(we’ll just leave it where it is on the page above) and then return to the 3 rd

recursion-level in order to resume that level’s iterative process. We won’t
actually do this because a glance at the table shows us that the remaining
iterations will produce the exact same value for ()H Z . Instead, we’ll jump
ahead to the end of those 3rd recursion-level iterations, at which point we
return to the 2nd recursion-level to continue with the iterative process at that
level. Note that in order to make this shift up two levels we have to restore

()p Z to its form at that level, which means we have to remove the values

we calculated for ()2p z and ()3p z . Thus, we have that

() (){ }1 0.55,...p Z p z= = .

At the 2nd recursion-level we are processing ()1Total - Probability - Set
which we can reproduce here:

()
() () ()
() () ()
() () ()
() ()
() ()
() ()
()
()

4 51,1

1 52.1

1 53,1

44,1

45,1

16,1

7,1

8,1

1

0.10 0.30 0.40,

0.05 0.30 0.35,

0.05 0.30 0.35,

0.10,

0.10,

0.05,

0,

0,

Total Probability Set

p b p s p s

p c p s p s

p a p s p s

p e p s

p g p s

p f p s

p h

p i

− −

= + = + =

= + = + =

= + = + =

= =

= =

= =

=

=

Now, the first iteration at this level hypothesized that 2z b= , and now we
will move down and take the next largest total-probability element in the list
which is () () ()1 52.1

0.05 0.30 0.35p c p s p s= + = + = . This time we set

2z c= and thus () ()2 2.1
0.35p z p c= = , which means that

() () (){ }1 20.55, 0.35...p Z p z p z= = = . Next, we perform task (2.b.ii) on

()1Total - Probability - Set to construct ()1,2Total - Probability - Set ,
which is as follows:

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 23 of 45

()
() ()
() ()
() ()
()
()
()
()

41,2

42,2

43,2

4,2

5,2

6,2

7,2

1,2

0.10,

0.10,

0.10,

0,

0,

0,

0,

Total Probability Set

p b p s

p e p s

p g p s

p a

p f

p h

p i

− −

= =

= =

= =

=

=

=

=

7. Once again, we interrupt the 2nd iteration of the 2nd recursion-level and begin
the 3rd recursion-level iterations, using as input ()1,2Total - Probability - Set
. Since we are beginning a totally new recursion-level we begin with the
first iteration in that level, i.e. () 1.2

0.10p b = . Thus, we set 3z b= and
() ()3 1.2

0.10p z p b= = , which we store in

() () () (){ }1 2 30.55, 0.35, 0.10p Z p z p z p z= = = =

Next we perform task 2.b.ii on ()1,2Total - Probability - Set in order to

produce ()1,2,1Total - Probability - Set , which appears as follows:

()
()
()
()
()
()
()

2,2

3,2

4,2

5,2

6,2

7,2

1,2,1

0,

0,

0,

0,

0,

0,

Total Probability Set

p e

p g

p a

p f

p h

p i

− −

=

=

=

=

=

=

8. Taking ()1,2,1Total - Probability - Set as input to the 4th recursion-level, we
see that once again (both because there are no non-zero total-probability
elements and because ()p Z is a complete probability distribution) we have

come to the end of a search path and can calculate another value for ()H Z :

() () () () () () ()2 2 20.55 log 0.55 0.35 log 0.35 0.10 log 0.10 1.33667H Z = + + ≈

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 24 of 45

The algorithm directs us to store this value for ()H Z along with the one we
obtained earlier and then to return to the 3rd recursion-level to resume that level’s
iterative process. A quick glance at ()1,2Total - Probability - Set reveals that doing

so will only produce the exact same value for ()H Z . In any case, having worked our
way through two complete search paths will hopefully have accomplished the goal of
clarifying in the reader’s mind the way this algorithm works. The last step of the
algorithm, the completion step, is straight forward. The list of values for ()H Z that
were accumulated in the iterato-recursive step is searched for the absolute smallest.
Clearly there will be at least one of these, but often there will be more than one.

Finding Excellent Approximations to Ideal Good-Regulator Models
Although the above algorithm is much more efficient than any brute force search

approach, even a moderately complex system will probably have a search space that
will simply be too large to completely cover in any practical length of time. Even in
such cases, however, the algorithm is useful because the very first step in the
algorithm will always yield an excellent approximation to the ideal good-regulator
model. This first step can be achieved very rapidly even with very complex systems,
and depending on how much search time is available to continue past the first step, the
algorithm has a good chance of turning up improvements on that excellent
approximation.

Real-World Applications: Goals for Future Research
This completes our current discussion of the search algorithm. From here I can see

three logical next steps to take along this line of inquiry. The first step, clearly, is to
write a computer program to implement this search algorithm. Although I have
already completed various prototypes of such a program and have used these to
answer various questions regarding the performance of the basic algorithm in an
informal way, I still have a good deal of programming and testing to do in this
direction.

The second and third steps are to show how such a computer program can be used to
solve, on the one hand, problems for which we already have solutions, and on the
other, new problems which are currently unsolved. The taking of these two steps
obviously requires the completion of the programming step. Regarding the
plausibility of success on these second and third steps, I can only point out that the
input to the search algorithm can be obtained at a very high level. Only the
distribution ()p S and the mapping : R S Zψ × → need to be specified. The
algorithm will calculate the “underdog” mapping :u S Z→ from which it is a simple
matter to find the “good regulator” mapping :g S R→ . These sorts of measurements
are well within the reach of current measurement technologies and resemble the sorts
of measurements made, for example, in the field of Operations Research. In short, I
see no reason to hesitate in the taking of these next three logical steps along the line of
inquiry established by the Conant and Ashby theorem. Although, as for any

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 25 of 45

investigation, there can be no guarantee that taking these steps will produce anything
useful, in my opinion the available evidence warrants a fairly high degree of
confidence that it will.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 26 of 45

Even Decent Regulators Must Be Models
We will now turn our attention to the more general version of the Good-Regulator

Theorem. As discussed in the introduction, the value of this theorem is two-fold. First
of all, the type of idealized, maximally optimal and simple good-regulator model
described by the C&A theorem is a difficult thing to find, even with the search-
algorithm described in the previous pages. The fact is that the overwhelming majority
of system-regulators that exist in the world are really just decent to excellent
approximations to their ideal versions. It would be nice to understand the relationship
between these sorts of effective-but-not-quite-perfect regulators and their ideal
counterparts referred to by the C&A theorem, and it is this more general version of the
good-regulator theorem that makes the connection. Secondly, the proof of this more
general version is extremely simple and thus has great pedagogical value. Whereas
C&A's theorem is probably beyond the lay-person's ability to understand without a
good deal of training, the version of this theorem we are about to examine requires
little more than the ability to read and count. Such a simpler and more general version
should go a long way toward making the Good-Regulator Theorem accessible to a
wider audience.

 The idea for this version of C&A's theorem comes partly from acknowledging the
role played in C&A’s original proof by the lemma that they used to establish what I
am calling the “underdog” mapping :u S Z→ . As far as I can see, the role of their
lemma is nothing more or less than to establish that mapping, and as regulator
designers we are free to constrain the regulator to such a mapping for any reason at
all, not simply because we want to minimize the entropy. I think that in the most
general case, we could just assume that there is some sort of justification for
constraining the regulator to behave according to an underdog mapping, i.e., that a
change in outcome can only arise from a change in column, and that we could make
this assumption regardless of any given outcome’s impact on the entropy function.
Another way to put it is that we can set aside the entropy function and open the door to
other ways to define the idea of “successful regulation”. The only criterion we need to
fix, at this point, is that whatever else it does, it must obey some sort of an “underdog”
mapping :u S Z→ . Then the only other assumption we would need is the
economical one that the regulator should be as simple as possible. Such an approach
would have maximum generality and be so simple that a child could understand it.

But there is also slightly less general way that has widespread applicability and that
still doesn’t require any sophisticated mathematics (such as the Shannon Entropy
function). This version of the theorem posits that a regulator is optimal to the extent
that it is selecting outcomes from Z according to a specified preference ranking on Z
(i.e., some mapping 1:f Z → ¥). Note that this definition of successful regulation
does not require the entropy function and thus it does not require that we know
anything about ()p S or ()p Z . All we need to know is that some outcome 1 ∈z Z is
said to be the “best” outcome, 2z is “second best”, and so forth. We will say that R is
behaving optimally as long it responds to S with respect to this preference ranking.
Now, if we also require that it achieves this result as simply as possible, then it turns

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 27 of 45

out that R will also be conducting itself according to some mapping :g S R→ (i.e.,
R will be a model of S).

The proof is nearly trivial and requires only the recognition that no matter what S
does, there will always be a “best available outcome”, as defined by the preference
ranking, and that therefore there could never be a rational justification for R to
choose, say, that “best available” outcome on some occasions and some “less than best
available” on others. Thus, R will always choose just one outcome per column,
which establishes the underdog mapping : →u S Z . From there, the economical
simplifying assumption then establishes the good-regulator mapping :g S R→ .

One point we can recognize here is that C&A's Good-Regulator Theorem is actually
a special case of this “preference ranking” version. Although C&A do not specifically
refer to such a preference-ranking, it is implicit in their discussion. That is a fairly
strong claim, but it was proven several pages back when I showed that any ()|p R S

that minimizes ()H Z is logically equivalent to the preference ranking that is

established by the natural ordering of the probabilities in ()p Z that were used to

calculate that minimized value for ()H Z . The thing to notice here is that whenever a
regulator manages to minimize the entropy function, it is only able to do so because it
is selecting its outcomes according to a particular preference ranking that allows it to
do so.

Another point to recognize is that although the proof of this more general version of
the Good-Regulator Theorem is nearly trivial, the theorem itself is profoundly
important because the type of regulatory process it describes – possibly sub-optimal
and driven by a preference-ranking – is ubiquitous throughout the biological world in
general and throughout the world of human behavior in particular9, vastly more so than
the type of idealized maximally optimal regulator described by C&A's version. The
main difference between the two is that this more general version ignores the
importance of stability. C&A's version places the important constraint on the
regulator that its preference-ranking maximally stabilize the outcomes it produces.
Such stability is almost always important to the very integrity of the regulator – any
regulator that ignores the stability requirement runs the risk of self-destruction. On the
other hand, the requirement that the regulator achieve the maximum amount of
stability that is possible under the given circumstances has the unfortunate effect of
obscuring the theorem's relevance to any discussion of real-world regulators. By
ignoring this criterion on the preference-ranking, the more general version allows us to
use the Good-Regulator Theorem in reference to all of the almost-certainly sub-
optimal regulator processes we see in the world. Of course, this increased generality
also means that the theorem applies to regulators that might destroy themselves with
their so-called “successful” regulation, but because they do tend to destroy themselves,
we don't encounter very many of those.

9The process of Natural Selection is just one really important example that explains how species come to
represent their habitats. From the domain of human behavior, our efforts to “get our priorities straight”
reflect an implicit understanding of the “Law of Requisite Back-up Plans”, discussed in the next section.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 28 of 45

A Law of Requisite Back-Up Plans

Another result that drops out of this analysis is something I have come to think of as
“The Law of Requisite Back-Up Plans”. Whether it is actually a law or perhaps just
an axiom of regulation depends on whether we want to define regulation in terms of
minimizing the entropy function or in terms of a preference ranking on the outcomes.
If we define it as a preference ranking on the outcomes, then we are simply assuming
it as an axiom, but if we define regulation in terms of the entropy function, then it is
deducible as an actual law, which can be stated as follows:

The Law of Requisite Back-Up Plans
Successful regulation requires the prior establishment of a
complete set of contingency plans over the set of all
possible outcomes Z .

In this context, a “contingency plan” is simply a rule that specifies, for any given
outcome z Z∈ , the next best outcome to accept in case the outcome z is not available.
Thus, “a complete set” of such contingency plans, defined “over the set of all possible
outcomes Z ,” would provide such a “back-up” plan for each outcome in Z . That this
law should hold (provided we have defined successful regulation as minimized
entropy) can be seen by recognizing the logical equivalence of such a set of
contingency plans and a preference ranking over the outcomes in Z . That is, to assert
that outcome 1z is preferable to outcome 2z , which, in turn, is preferable to outcome 3z
, and so forth, is to say nothing more or less than that outcome 2z is the “contingency
plan” for outcome 1z , that outcome 3z is the contingency plan for outcome 2z , etc. Of
course, if we define successful regulation in terms of such a preference ranking
regardless of its impact on the entropy function, then the above law is reduced to the
status of an axiom.

Part of the utility of this law is that it clarifies a major responsibility of anyone who
would try to design a successful regulator. What it tells us is that it is not enough just
to concern ourselves with what the possible outcomes are, or even with what the most
desirable outcomes are. In order to design a successful regulator, not only do we have
to know what all of the outcomes are, but we also have to rank them all with respect to
each other.

This runs counter to the popular advice that places great emphasis on so-called
“positive thinking” and focusing only on our highest aspirations. “Don’t dwell on the
negative”, “Keep your eyes on the prize” and so forth. The Law of Requisite Back-Up
Plans tells us that if we really want to be successful, we need to step back and take in a
larger view. It isn’t enough to focus only on our highest aspirations. We must know
in advance what we will do if our loftiest goals just aren’t possible.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 29 of 45

Ashby’s First Law: The Any-Port-In-A-Storm Theorem
The C&A theorem specifies a necessary condition for the successful regulation of

any system. As such, it can be cast in the logical form of a material conditional (i.e. “if
P then Q”):

If a system is being optimally and most simply regulated,
then some model of that system is driving the regulation.

This is a simple but important point. The C&A theorem is not a sufficient condition
for successful regulation, nor is it any sort of promise that the theorem’s converse (the
“if Q then P” version) might hold for any given case. The converse of the C&A
theorem would be:

If a model of a system is driving its regulation, then that
system is being optimally and most simply regulated.

It is important to keep the distinction clear between these two propositions, the first
of which is true, while the second is maybe true but maybe false, depending on the
particular model that is driving the regulation. This point really needs to be
emphasized because despite the profound utility of the C&A theorem, its status as
necessary and not sufficient condition (let’s be frank about it) is a bit of a
disappointment. I say that somewhat facetiously, of course, because my own
assessment of this theorem (in case it isn’t obvious) borders on the kind of dogmatic
reverence that is usually reserved for prophetic scripture. But let’s face it, as useful as
it is to specify any given prerequisite or necessary condition to achieve some valued
objective, what we would really like more than anything is the complete set of all the
prerequisites, which is to say, the sufficient condition and the C&A theorem falls far
short of such a thing. This state-of-affairs is perfect for provoking the kind of wishful
thinking that might otherwise blind us to the way the world really works, thus tricking
us into misunderstanding the C&A theorem.

On the other hand, there is a proposition which, though not really the converse of the
C&A theorem, bears a useful resemblance to it, and it is this proposition that I am
calling Ashby’s First Law, or the Any-Port-In-A-Storm theorem. Perhaps the simplest
way to put it is as follows:

Any model is better than no model at all
This result follows from a basic property of the entropy function that in turn follows

from the facts that 1 log1 1 0 0⋅ = ⋅ = and also that for the purposes of the entropy
function, the quantity 0 log 0⋅ is defined to be zero. Thus, for any discrete probability
distribution { }1 2, ,..., nP p p p= , such that 0 or 1, for all i ip p P= ∈ , we have that

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 30 of 45

()1 2
1

, ,..., log 0
n

n i i
i

H p p p p p
=

= − =∑ . Now, let’s consider a specific example as

represented by the following table:

1 2 3 4 5 6

1

2

3

4

s s s s s s
r b e d g b h
r c f i e g d
r f d e b a i
r a d c e i f

ψ

One thing to notice about this example is that there are no duplicate outcomes in any
of the rows, although there are in some of the columns. This is a restriction that we
did not make in our previous discussion of the search algorithm. The result of this
assumption is that the following relationship, the utility of which will be made clear in
a moment, holds:

() ()| |H S R H Z R=

To motivate and illustrate what follows, let’s begin by recalling that when a
regulator is behaving in accord with a mapping :h S R→ , the associated conditional
distribution that defines the regulator, () (){ }| | : ,p R S p r s r R s S= ∈ ∈ , is such that

()| 0 or 1i jp r s = , for each () ()| |i jp r s p R S∈ . But as regulator designers, we are
not required to obey this like dogma. It just so happens that – by the C&A theorem –
we must do it if we wish to minimize ()H Z , the entropy associated with the resulting
outcomes. But if that is not our wish, then we only have to obey the rule that

()0 | 1i jp r s≤ ≤ . Because of this, a regulator could be designed to maximize ()H Z ,
or perhaps to attain some value in between the maximum and minimum.

As a general rule-of-thumb (meaning that important exceptions exist) the greater the
number of outcomes ultimately selected, the greater the resulting entropy that is
associated with those outcomes. Conversely – and again, as a general rule-of-thumb –
the fewer the outcomes, the lower the entropy. It is important to realize that this is not
strictly true, and plenty of counter examples are easily found. For example, a
regulator that produces three outcomes { }, ,a b c , such that () .80p a = and

() () .10p b p c= = has an entropy of .8log.8 .1log.1 .1log.1 0.922− − − ≅ whereas a

different regulator that produces only two outcomes { },a b such that
() () .50p a p b= = has an entropy of .5log.5 .5log.5 1.00− − = . The notion of

stability that is captured by the concept of minimized entropy is more complicated
than can be described merely with the number of outcomes produced – what Ashby

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 31 of 45

called Variety. What is also important is the frequency with which these outcomes
appear. It is ironic that Ashby’s notion of Variety turns out to lack the variety
requisite to the task it was meant to accomplish – the measurement of stability. In any
case, even though it is not strictly true, it’s true often enough to make the following
discussion meaningful. We will deal with the counter examples later.

In the case we are considering there are a total of 9 possible outcomes
{ }, , , , , , , ,Z a b c d e f g h i= , and any regulator that maximized ()H Z would assign

some sort of positive probability to each one of those outcomes. On the other hand,
any regulator that behaves according to some mapping :h S R→ – any mapping at all
– must necessarily produce fewer than 9 outcomes, and thus (again, as a rule-of-thumb
with exceptions very possible) a lower entropy. To see why this is the case, consider
the following three arbitrary mappings, { }: , for 1,2,3ih S R i→ ∈ , along with the
outcomes they produce :

1.
1 2 3 4 5 6

1
2 3 1 2 4 3

s s s s s s
h r r r r r r↓ , produces the outcomes { }, , ,c d e i Z⊂

2.
1 2 3 4 5 6

2
3 3 3 3 3 3

s s s s s s
h r r r r r r↓ , produces the outcomes { }, , , , ,f d e b a i Z⊂

3.
1 2 3 4 5 6

3
4 1 1 3 4 2

s s s s s s
h r r r r r r↓ , produces the outcomes { }, , , ,a b d e i Z⊂

Notice that in each case, the number of outcomes actually produced is less than Z ,
the total number than could be produced if we didn’t use a mapping, and, as already
mentioned, when this sort of thing happens, the resulting entropy tends to be lower
(with important exceptions).

These examples are meant to illustrate the gist of Ashby’s First Law: any model is
better than no model. Unfortunately, these examples rely on Ashby’s concept of
variety – i.e. the number of distinct elements in a set – which as, already pointed out,
lacks the variety requisite to the task before us. In order to handle the exceptions, we
need the entropy function; we proceed as follows:

Another type of entropy that we can calculate is that associated with the regulator’s
responses for any given column, say the column associated with system behavior

4s S∈ . This is defined to as follows:

() () ()
4

4 4 4
1

| | log |i i
i

H R S s p r s p r s
=

= = − ∑

In the most general case we have that ()0 | 1i jp r s≤ ≤ , but for any mapping

:h S R→ it must be the case that ()| 0 or 1i jp r s = , and so, by the property

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 32 of 45

described above, () () ()
4

4 4 4
1

| | log | 0i i
i

H R S s p r s p r s
=

= = − =∑ . Since this holds for

each js S∈ , we have that,

() () () () () () ()
1 1 1

| | | log | 0 0
S R S

j j i j i j j
j i j

H R S E H R S s p s p r s p r s p s
= = =

 = = = = =

∑ ∑ ∑

A point I want to highlight here is that this is true for any mapping :h S R→ ,
regardless of its impact on the entropy function.

Now, in his discussion of his Law of Requisite Variety10, Ashby performs the
following derivation:

() () () () (), | |H R S H S R H R H R S H S= + = +

() () () ()| |H S R H R S H S H R= + −

() () () () ()| |H Z H Z R H R S H S H R≥ = + −

Where the last line in this derivation makes use of our assumption that there are no
duplicate outcomes in any given row of the table, that is () ()| |H S R H Z R= . The
purpose of this argument is three-fold. First of all, it shows that there is an absolute
minimum below which further reduction in ()H Z is impossible. Secondly, it shows
us that as regulator designers, we can have quite an impact on that lower limit. And
thirdly, it shows us two ways to lower that limit. The first way is to use a mapping

:h S R→ , which will set ()| 0H R S = , and the second is to increase ()H R .

Ashby’s Law of Requisite Variety states that provided we have used a mapping
:h S R→ that fixes ()| 0H R S = , an assumption that extends the above derivation to

the following line:

() () ()H Z H S H R≥ − ,

 then the only way to further lower the absolute limit on ()H Z is to increase the

value of ()H R , the entropy associated with the regulator’s responses. This is what I
think of as Ashby’s second law – the Law of Requisite Variety. Actually, and for
reasons already mentioned, the term variety is insufficient to the task it was meant to
perform, and so it would be more accurate to call Ashby’s second law the Law of
Requisite (Average) Surprise, because the quantity ()log p r− is considered a measure

10http://pespmc1.vub.ac.be/Books/AshbyReqVar.pdf , although my notation here is a little different from
that used by Ashby.

Copyright 2009-2010 by Daniel L. Scholten

http://pespmc1.vub.ac.be/Books/AshbyReqVar.pdf

Every Good Key Must Be A Model Of The Lock It Opens Page 33 of 45

of the surprise we would experience at the observance of the execution of behavior
r R∈ and so ()H R is the expected (average) value of that surprise11.

But what I am calling Ashby’s First Law is this fact that a mapping – any mapping
(i.e. model) at all – will also improve the situation by lowering that limit. I think of it
as his first law because he uses it to derive the Law of Requisite Variety, that is, his
second law. I also think of it as the “Any-Port-In-A-Storm Theorem”, because this
floor lowering effect can be accomplished with any model at all.

One additional caveat is in order regarding this notion of a floor or lower limit on
()H Z . The fact that () () () ()|H Z H R S H S H R≥ + − is an inequality means that

we are ignorant about the actual location of ()H Z with respect to the floor. Perhaps
it is close, perhaps it is far away, we can’t really know. What this means is that raising
or lowering the floor might have absolutely no impact whatsoever on the actual value
of ()H Z that is obtained for a given regulator. Such is the nature of prerequisites and
necessary conditions. They make things possible, but they don’t make things certain.
What this means is that we might very well regulate with a model (()| 0H R S =) and

with maximum possible average surprise in the regulator (()H R as large as possible),

and we might still end up with a high value for ()H Z . On the other hand, Ashby’s
First and Second Laws tell us that if we don’t handle these prerequisites, we will
certainly be stuck with a value that is at least () () () ()|H Z H R S H S H R≥ + − .

This caveat means that we have to clarify what we mean by any model is better than
no model at all. What will always be improved with a model (given the assumption
that () ()| |H S R H Z R=) – regardless of the model actually used – is that the floor

on ()H Z will be lowered. To the extent that this is a good thing, the situation has

been improved. However it does not mean, in general, that ()H Z will actually be
lowered. Whether that actually happens will depend on the particularities of the
system and regulator in question. Still, ()H Z cannot be actually reduced until the
capacity for such reduction has been created, which means that we have to fulfill
Ashby’s First and Second Laws.

The above caveat notwithstanding, it is easy to find examples, especially in human
behavior, that appear to be explained by Ashby’s First Law. In particular, it appears to
explain why human beings can come to venerate and tenaciously defend certain belief
systems which are otherwise completely incoherent with the workings of the world as
determined through controlled experiment. Why does so-and-so believe there is a
unicorn living in his attic? Because holding such a belief causes an increase in
stability (i.e. lowers the entropy) in some aspect of his life over what he would have in
the absence of such a belief. Any port in the storm. What does he fight so vehemently
against the evidence that contradicts his belief? Because to give up that belief would

11 http://en.wikipedia.org/wiki/Self-information

Copyright 2009-2010 by Daniel L. Scholten

http://en.wikipedia.org/wiki/Self-information

Every Good Key Must Be A Model Of The Lock It Opens Page 34 of 45

leave him in an uncomfortable state of confusion regarding the mysterious sounds he
hears coming from his attic late at night. Any model is better than no model at all.

Seen in this way, Ashby’s First Law has important implications for the art of
persuasion. If you have ever been frustrated by your failure to persuade someone to
your point of view despite your best efforts to lay out what appears to you to be
overwhelmingly convincing evidence that you are right, then it could be because you
are not addressing the deeper issue that the beliefs you are arguing against have a
powerful, stabilizing effect on the life and well-being of the person who holds those
beliefs and that your attempts to change those beliefs are threatening to destabilize the
well-being of that person. The obvious conclusion to draw here is that if you really
want to change the belief, then you have to address this issue of stability.

Another part of human behavior that this theorem appears to explain is the existence
of habits. Try the following thought experiment. Try to imagine what your life would
look like if you had no habits whatsoever. Every waking moment would be an
unpredictable mess. Some mornings you would wake up and eat breakfast, and some
you’d wake up and glue all of your shoes to the ceiling. Sometimes you might answer
the phone when it rang and other times you’d try to see how fast you could count
backwards from 53. If you take a disciplined look at the things you do every day, or
every week, or every time you eat lunch, you will see that many of them are pretty
arbitrary and could easily be swapped for different ones without much difficulty,
except for the fact that you never really do that. Habits are habits. Arbitrary or not, if
you went around changing too many of them your life could get pretty messy.

So we have these arbitrary habits simply because they are models and although they
may be somewhat arbitrary and far from the best models we can find, by virtue of the
fact that they help us keep things under control, we adopt them and resist giving them
up.

Ashby’s First Law and the C&A theorem work together to form a team. On the one
hand, we know that if we want to regulate a system (solve a problem, open a lock), we
need to have a model of that system (problem, lock). On the other hand, it isn’t
always easy to find the best such model for the job at hand. But Ashby’s First Law
tells us that in some respects, it might not matter so long as we at least have some sort
of model. Clearly this is true in only a limited sense, and only if the alternative is no
model whatsoever. Once we have some sort of model, we can reasonably begin to
consider whether it is the best we could have. Of course, the widespread existence of
conflicting habits, beliefs, customs and cultural practices would suggest that many
people just sort of stop after they get their hands on some kind of model. The whole
point and practice of Science, of course, is to continually try to improve on our
models.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 35 of 45

Every Good Solution Must Be A Model Of The Problem It Solves
It has become something of a hobby for me to find metaphorical equivalents to the

C&A theorem. One objective of this paper is to offer what I believe are two of the
most useful12:

1. Every Good Key Must Be A Model Of The Lock It Opens,

2. Every Good Solution Must Be A Model Of The Problem It Solves.

The first metaphor has a luminous tangibility that makes the truth of the theorem
utterly obvious. A glance at any standard pin-tumbler key shows that the ridges of the
key form a precise model of the contours that the lock’s inner pins must assume in
order to liberate the tumbler and allow it to turn the bolt, as can be seen in the
following image13:

The second metaphor casts the C&A theorem as a fundamental theorem of problem
solving. Understood as such, the theorem equates the process of problem solving with
the process of problem modeling and especially the process of problem re-modeling.
As Herbert Simon observed, “Solving a problem simply means representing it so as to
make the solution transparent.”14 In other words, the solution to the problem is the
very model that renders the solution transparent.

Examples of this principle are abundant and easily found. One ready example can
be seen in these very pages, in the various ways that I have represented the search
algorithm. One such representation was the “formal” version, which was almost
certainly impossible to understand at first reading. Another representation can be seen
in the worked examples that followed the formal presentation. These worked
examples can be seen as a control-model for the more formal presentation, and were
almost certainly much easier for you to follow, and (hopefully) allowed you to
understand the formal presentation. To the extent that understanding the formal
representation was a problem, the worked examples (i.e. the control-model) were the
solution to that problem.

12 A few others: “Every successful species must be a model of its ecological niche”, “Every good manager
must be a model of the company she manages,” “Every good replicator must be a model of itself.” These
versions cast the C&A theorem as a fundamental theorem of Biology, Management Science and Mimetics,
respectively.
13 This image is one of a series that can be found, along with a more detailed explanation of the mechanism
at http://en.wikipedia.org/wiki/Pin_tumbler_lock
14 H.A.Simon, 1981, The Sciences of the artificial, 2nd edition, MIT Press, Cambridge, MA, as cited in
Donald A. Norman, Things That Make Us Smart: Defending Human Attributes in the Age of the Machine,
pg. 53, 1993, Basic Books, New York, NY.

Copyright 2009-2010 by Daniel L. Scholten

http://en.wikipedia.org/wiki/Pin_tumbler_lock

Every Good Key Must Be A Model Of The Lock It Opens Page 36 of 45

A plentiful source of especially clear examples of this principle can be found in the
study of Linear Algebra, in particular the matrix reduction techniques used to solve
systems of linear equations. By representing such a system as an augmented matrix,
finding the solution set is equivalent to the mechanical process of applying the 3 basic
row operations, each of which effectively “re-models” the system, until the solution
set is obvious. This final representation of the original system of linear equations, i.e.,
the final model of that system, is the solution15. Let’s quickly walk through an
example to illustrate this process. Consider the following system of linear equations:

1 2 3

1 2 3

1 2 3

8 3 11 25
5 6 13

2 5 28 75

x x x
x x x

x x x

− − = −
− − = −

− + + =

This system can be represented (modeled) with the following augmented matrix of
coefficients:

8 3 11 25
5 1 6 13
2 5 28 75

− − −
 − − −
 −

Recall that we are free to execute any of the following three basic row-operations on
the above matrix and the resulting matrix will correspond to a system of linear
equations that has the exact same solution set as the original system:

1. Replace any row with a non-zero constant multiple of itself (we will
represent this process in general as i jk R R⋅ →),

2. Swap any two rows (i jR R↔), and

3. Replace any row with a row constructed by adding it to a constant multiple
of any other row (i j jk R R R⋅ + →).

Performing the first row operation as 1 1
1
8

R R→ on the above augmented matrix

yields the following, what we can of think of as a re-modeled version of the original:
3 2511

8 8 81
5 1 6 13
2 5 28 75

− −−
 − − −
 −

Recall that although this matrix appears to be a bit different from the original
augmented matrix, it represents the following system of linear equations which has the
exact same solutions set as the original system:

15 A representative text is Howard Anton and Chris Rorres, Elementary Linear Algebra, Applications
Version, 9th edition, 2005, John Wiley & Sons, Hoboken, NJ.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 37 of 45

3 2511
8 8 81 2 3

1 2 3

1 2 3

5 6 13
2 5 28 75

x x x
x x x

x x x

− − = −
− − = −

− + + =

Because it has the same solution set, we can view it as just a different way to
represent (model) the original system.

Continuing on with the new matrix:
3 2511

8 8 81
5 1 6 13
2 5 28 75

− −−
 − − −
 −

,

we can execute the first row operation two more times in sequence as 2 2
1
5

R R→

and 3 3
1

2
R R− → , performing the operation each time on the output matrix from the

previous row operation. Doing so yields the following:
3 2511

8 8 8

6 131
5 5 5

5 75
2 2

1
1
1 14

− −−

− −−

− −

 −

Next, if we perform the third row operation two separate times as 1 2 2R R R− + →
and 1 3 3R R R− + → we get:

3 2511
8 8 8

7 7 21
40 40 40

17 101 275
8 8 8

1
0
0

− −−

− − −

Two executions of the first row operation as 2 2
40
7

R R→ and 3 38R R− → yields:

3 2511
8 8 81

0 1 1 3
0 17 101 275

− −−

Next, we execute the third row operation twice as 2 3 317R R R− + → and

2 1 1
3
8

R R R+ → to produce:

1 0 1 2
0 1 1 3
0 0 84 224

− −

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 38 of 45

Then we execute the first row operation as 2 2
1

84
R R→ to produce:

8
3

1 0 1 2
0 1 1 3
0 0 1

− −

And finally, two executions of the third row operation as 3 2 2R R R− + → and

3 1 1R R R+ → yields:

2
3

1
3

8
3

1 0 0
0 1 0
0 0 1

Remember that at each step in this process, the resulting matrix represents a system
of linear equations that has the exact same solution set as the original system. Because
of this, we can see the production of these intermediate matrices as sequence of
models of the original system and the whole process as a re-modeling process that
produces the final reduced row echelon form (RREF) of the original matrix. This final
RREF matrix represents the following system of linear equations:

2
31 2 3 1

1
31 2 3 2

8
31 2 3 3

1 0 0
0 1 0
0 0 1

x x x x
x x x x
x x x x

⋅ + ⋅ + ⋅ = =
⋅ + ⋅ + ⋅ = =
⋅ + ⋅ + ⋅ = =

Again, this system has the same solution set as the original system, and thus can be
thought of as a model of that system. Furthermore, as was described by Simon, this
final model represents the original problem in such a way as to make the solution
completely obvious. It other words, it is this model that is the solution to the original
problem.

Of course, the preceding sort of analysis does not constitute a proof that “every good
solution must be a model of the problem it solves.” It is a plausibility argument only.
One way to construct such a proof would be to piggy-back on Conant & Ashby’s
original argument by defining a problem in terms of, say, a “scenario repertoire”

{ }1 2, ,..., SS s s s= , where the elements in S represent mutually exclusive scenarios

that a given problem might present. The proof, then, would otherwise be exactly the
same as for the original theorem. As solution designers, we would assume that we are

equipped with a repertoire of possible responses { }1 2, ,..., RR r r r= that combine with

the problematic scenarios in S to produce outcomes in Z according to some mapping
: R S Zψ × → . From here we could define a “good solution” either as one that

produces outcomes from Z so as to minimize ()H Z , or more generally according to
some specified preference ranking on those outcomes. Of course, if we wish to take

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 39 of 45

the minimized entropy approach, we will also have to specify a probability distribution
()p S . The upshot here is that we don’t really need a proof of this fundamental

theorem of problem solving, beyond recognizing that any problem can be viewed as a
system in need of regulation. Conant and Ashby have already proven the theorem.

But they did so in the technical language of Systems and Regulators, which tends to
bring to mind clunky images of Thermostats and Watt-Governors and if it is not your
job to build or maintain such devices, you may tend to think that the C&A theorem is
something you don’t really need to know about. But everybody has to solve problems,
and what could be more useful than a fundamental theorem of problem solving that
tells us how to proceed to solve them?

What must we always do?

Make a model of the problem.

How do we know we have to do that?

Because we know that every good solution must be a model of the problem it solves.
Whatever else we do, we must do at least that.

Of course, most of the time this approach will fail, at least on the first attempt, but
only because there are many, many ways to model any given problem, and only a
relatively few will make the solution transparent. But if after modeling the problem
the solution is not transparent, then we also know that we have to come up with a
different model. How do we know this? Again, because every good solution must be
a model of the problem it solves. If the model we currently have doesn’t solve the
problem, then we must find some other way to model the problem.16 As illustrated
above with the matrix reduction example, the C&A theorem shows us that the process
of problem solving is equivalent to the process of problem modeling, and especially,
the process of problem re-modeling.

16 For a compelling popular examination of the importance of problem representation to problem solving,
see Donald A. Norman’s Things That Make Us Smart: Defending Human Attributes in the Age of the
Machine. 1993. Basic Books. New York, NY.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 40 of 45

Conclusion

Have you ever stopped to notice all the models and representations we humans seem
to use? A little disciplined reflection reveals that they are really just about
everywhere. And I’m not just talking about the obvious ones – e.g. the scale model
buildings used by architects; the model airplanes, trains, boats and cars played with by
children and hobbyists; the fashion models that show us how to dress, adorn ourselves,
stand, walk and wear our hair; and of course the computer software we use to model
everything from virtual desktops to entire virtual worlds. I do mean at least those, of
course, but I also mean the ones that may not be so obvious. For example, consider a
device as simple and as common as a grocery list, which is a model of the items you
need from the store. Every list, in fact, is such a model – a to-do list, a guest list, the
index and table of contents for a book, a travel itinerary, a list of ingredients, etc. Or
consider a typical wall-mounted light switch which models the level of light in a room
– i.e. when it’s in the “up” position the light is on (usually) and when it’s in the
“down” position the light is off. And I’ll bet that every morning as you prepare for
your day – as you dress, comb your hair, shave, apply make-up, etc. – you make use of
the model of your appearance that is reflected back to your eyes from the surface of a
mirror. I’m referring to all of the models we use. They really seem to be everywhere.
If you step back and take an objective look at our modern civilized way of life what
you will see is a biological species that literally walks, drives, talks, eats, works and
plays with models. Here are a few more examples to illustrate the point:

• A city street map is a model of the actual city streets (thus, we walk and drive
with models).

• Any spoken or written sentence is a model of the real-world events or objects
that form the topic of that sentence (thus, we talk with models).

• A restaurant menu is a model of the food the restaurant prepares and sells
(thus, we eat with models).

• An accounting register is a model of a company’s financial activity (thus, we
work with models).

• A set of instructions for a game, such as Chess, are a model of that game (thus,
we play with models).

And in order to really emphasize the point, here are several more examples (in no
particular order) of common models that we either use deliberately or else depend
on in some important way:

• A photograph is a model of the actual subject(s) depicted in the photograph.

• Your annual tax return is a model of your annual financial activity.

• An audio or video recording is a model of the actual sounds or images used to
make the recording.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 41 of 45

• A job description is a model of an employee’s role and responsibilities in a
company.

• A memory in your brain is a mental-model of some experience you lived.

• A piece of sheet music is a model of a given piece of music.

• A cooking recipe is a model of a process used to prepare a given dish.

• A library’s catalog is a model of the library’s inventory of documents.

• The DNA in your cells is a model of the process used to build your physical
body.

• A template, such as a rubber stamp or a stencil, is a model of some pattern,
form, block of text, etc.

• A business plan is a model of a business.

• Any given particular performance of a habit is a model for all of the other
performances of that habit.

• A census is a model of a given population.

• A project manager’s work-plan is a model of the tasks to be accomplished
throughout a project.

• A representative sample is a model of the substance or population that provided
the sample.

• An abstract symbol (e.g. a red cross, the word pencil) is a model of the actual
thing, idea or institution represented by that symbol (e.g. the Red Cross
organization, an actual pencil).

• When light reflects off of any physical object it is structured into a model of
that object.

• An ethical rule, such as “be kind to strangers” or “always tell the truth” is a
(mental) model of some ideal behavior.

• Many children’s toys are models – cars, boats, airplanes, dolls, puppets, stuffed
animals, houses, kitchen appliances, assembled puzzles, game pieces (e.g.
Monopoly, Battle Ship, etc.). Also, many children’s toys are used for making
models – blocks, Legos, Lincoln Logs, erector sets, scale model kits, etc.

• A university chemistry textbook is a model of the basic chemistry knowledge
to be learned by a chemistry student.

• A song written, for example, in the key of C major, is a model of the same song
transposed, for example, to the key of F major.

• A written constitution is a model of an organization, such as a state, a club or
an educational institution.

• A sculpture is a model of the artist’s idea for that sculpture.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 42 of 45

• A dead influenza virus, such as is used in a flu vaccine, is a model of a living
influenza virus.

• An immune system antibody possesses a surface that is a model of an antigen’s
surface.

• A fossilized organism is a model of the original organism.

• A quantitative measure of some attribute of a thing, (e.g. its length, weight,
density, etc.) is a model of that attribute.

• Your reputation – i.e. the ideas, evaluations, memories, etc. that others have of
you in their heads – is a (mental) model of you. Your reputation can take on
more durable forms as well, for example: your career résumé, your credit
report, your academic transcript, or your profile in an online social network
(Facebook.com, Classmates.com, etc.)

• A “friendly hacker” of the kind hired by organizations in order to test their
computer network security systems is a model of a real hacker of the kind who
tries to break into such systems in order to steal data.

• A history book is a model of historical events.

• A key is a model of a lock’s keyhole.

• Honey bees use a kind of dance to model the location of a source of nectar17.

• A legal contract is a model of the behavior of those bound by the contract.

• An understanding or an explanation of some thing or phenomenon (e.g. a
mechanic’s understanding of the way a combustion engine works or a
physicist’s explanation of lightening) is a (mental) model of the actual thing or
phenomenon.

• A system of classification (e.g. the periodic table of the elements, or the
spectrum of colors) is a model of the classified items.

• In a ball and socket joint, such as in the human shoulder, the ball is a model of
the socket.

• A (school, company, home) fire-drill is a model of the events that ought to
occur during an actual fire in order to ensure the safety of the participants in
the drill during an actual fire.

• A U.S. one dollar bill is a model of one dollar’s worth of purchasing power.

• A belief system is a (mental) model of the way the world works.

• A teacher’s course syllabus is a model of the course he or she will teach.

• A scientific theory or mathematical theorem, such as Einstein’s famous E=mc2

or Darwin’s theory of evolution by natural selection is a model of some aspect
of the way the real world works.

17 See James L. Gould’s paper “The Dance Language Controversy”, The Quarterly Review of Biology,
1976, Vol. 51, No. 2, pp. 211 -244.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 43 of 45

I’ll stop there, but I’d like to point out that this list could go on and on. The above
list (a type of model) is only a sampling (another type of model) of the all of the
models we humans use or on which we depend on a daily basis and it is only intended
to give you a rough idea (e.g. a mental model) of the astonishing ubiquity of models
throughout the human domain, which you can start to glimpse in this list, and which
you can observe even more profoundly, now that you know what I’m talking about, by
keeping your eyes open in your daily life. We are literally surrounded by models.
They seem to be just about everywhere and we seem to use them deliberately (maps,
menus, lists, etc.) or benefit from them passively (DNA, immune system antibodies,
honey bee dances18) in nearly everything we do. They form a solid cornerstone of
human civilization and a fundamental element of the human habitat, much as our air,
water and food supplies. We are constantly making and using them. We start off
playing with them as children (dolls, toy trucks, etc.) and then we grow up and use
them in just about everything we do from grocery shopping to constructing office
buildings. In analogy to the terms biosphere and biophilia, (if you can excuse my
mixing of the Latin and Greek roots) we might say that we humans live within a
modelosphere, and that we are modelophilic, i.e. in love with models19.

Such an important and widespread phenomenon cries out for an explanation. What
is the purpose of all this model-based behavior? The answer can easily be seen when
you go back over the above examples and try to imagine what life would be like
without these models. Imagine trying to shave or put on make-up in the morning
without a mirror to help you. Imagine trying to navigate through a foreign city
without a map of that city. Imagine trying to order a meal in a restaurant without a
menu. And when you conduct these kinds of thought experiments, be careful not to
cheat. It’s no fair asking the waiter for his memorized menu! Without any sort of
menu you’d have to just guess until you stumbled onto something the restaurant
makes. Of course, if there were no architectural models, business plans, or recipes
then you wouldn’t even get that far because there would be no restaurants! The key
word here is complexity and these models help us to manage it. As soon as behavior
becomes much more complex than the basics open to any animal – sleeping, eating,
wandering around, etc. – then we pretty much need some sort of model or
representation in order to make it happen.

In the introduction I referred to a distinction that can be made between a good-
regulator model and its “technical specification”, or control-model. I gave the
example of a recipe for roast-duck which is the control-model that a human being uses
to become the dynamic good-regulator model for the system of ingredients and kitchen
tools that produces the roast-duck. The same reasoning applies to most of the models

18 Our food supply is heavily dependent on honey bees and other insects for the pollination of the plants we
eat.
19 It is not clear to me that there is much of a difference between what I am calling a “model” and what
semioticians call a “sign”. To the extent that these are the same, then what I am calling the Modelosphere
is what semioticians call the Semiosphere, or “culture as a system of signs”. See page 39 of Danesi,
Marcel, Messages, Signs, And Meanings: A Basic Textbook in Semiotics and Communication Theory, 2004,
Canadian Scholars' Press Inc, Toronto.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 44 of 45

and representations we have just examined20, which is to say that these can be seen as
technical specifications that we humans use to transform ourselves into good-regulator
models of the systems that we hope to regulate with their help. Furthermore, although
the C&A theorem does not actually prove that these control-models are necessary to
the regulation of these systems, the above sorts of thought experiments constitute a
kind of inductive argument in favor of this position. Furthermore, given the
astonishing complexity of the Human Modelosphere (briefly surveyed above) we can
now reasonably wonder about the sort of high-level technical specification (control-
model) that we will surely need in order to become (or otherwise build) good-
regulators of that very complicated system. And although it is hard to imagine that
those technical specifications could ever be squeezed into a single essay such as the
one written by Conant and Ashby in 1970, it does seem compellingly obvious that
these hypothetical technical specifications will simply have to contain, at the very
least, the information their paper encapsulates. The upshot here is that with respect to
our attempts to regulate this Modelosphere, the C&A theorem would appear to be
very, very important.

Here we can return to the question raised in the introduction to this paper as to why
the C&A theorem is not anywhere near as famous, say, as the Pythagorean Theorem.
For that matter, why isn’t this theorem being taught as part of the standard science
curriculum? Why doesn’t it show up on tee-shirts and bumper stickers and in movies
about super heroes? After all, this system of control-models is already enormous and
still growing and the C&A theorem explains much about what is required to regulate
that system. One would think that these facts would have struck themselves together
like flint and steel and ignited a conflagration of fascination for models and everything
that has to do with them.

That last statement needs to be explained. Of course, in a sense, there is already
such a widespread fascination with models. That is exactly what I mean when I say
that we humans are modelophilic. We do love models. They are everywhere precisely
because on some level we are fascinated by them. But what is missing is widespread
high-level recognition and understanding of this fact. In this sense we are like birds
who fly, but who have no clue about Newton’s Laws or the Bernouilli Principle. It is
the lack of this higher level fascination that strikes me as odd, if not a little precarious.
The Conant & Ashby Theorem is the conceptual key that could unlock the door to
such a higher level fascination, and yet, few people have ever even heard of it.

I won’t pretend to have any sort of final solution to this problem, but I can offer
what I believe are a couple of useful insights. For one thing, I believe that the theorem
has suffered from poor public relations. This is partly because the version of the
theorem that Conant and Ashby proved relies on some mathematics that is probably a
little intimidating to the lay-person, to say the least. My hope is that the simpler
version of the theorem, presented earlier, will go a long way to solving that problem.
Furthermore, the core idea of the theorem is couched in the technical jargon of
“systems” and “regulators”. I think the theorem would be a lot more famous if it
could be couched in more concrete terms that more people can relate to, hence the

20Excepting the likes of DNA, honeybee dances, etc. which we rely on but don't really use in the same way
we use a grocery list.

Copyright 2009-2010 by Daniel L. Scholten

Every Good Key Must Be A Model Of The Lock It Opens Page 45 of 45

“Every good key...” and “Every good solution...” metaphors that I have offered in this
paper.

But public relations can only go so far. I suspect that the Pythagorean Theorem
never needed a public relations campaign in order to achieve its fame and it is always
expressed in the language of algebra and geometry that probably frightens most adults
despite its simplicity. Of course the reason it has achieved its fame is because it has
always been useful. It is my hope that the search algorithm I have presented here will
ultimately demonstrate the usefulness of this theorem to the point where it earns the
status of a kind of “Pythagorean Theorem” for, at least, the field of Operations
Research and possibly other fields as well (Game Theory, Evolutionary Theory, a
General Theory of Problem Solving, Semiotics, Cognitive Science, Genetics,
Memetics, etc.) Once it has established its usefulness in this way, the next step will be
for it to make its way into the standard science education curriculum, and after that,
perhaps onto tee-shirts and bumper stickers.

Whether it can actually fulfill such lofty ambitions remains to be established, but I
hope I have left you intrigued by the possibility of such an outcome.

Copyright 2009-2010 by Daniel L. Scholten

	Introduction
	Finding Good Regulators: A Search Algorithm
	The Search Algorithm, Formally Stated
	Working Through An Example
	Finding Excellent Approximations to Ideal Good-Regulator Models
	Real-World Applications: Goals for Future Research

	Even Decent Regulators Must Be Models
	A Law of Requisite Back-Up Plans
	Ashby’s First Law: The Any-Port-In-A-Storm Theorem
	Every Good Solution Must Be A Model Of The Problem It Solves
	Conclusion

