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Introduction

The title of the present paper is really a metaphor for what might have been a more 
literal title:

Every Good Solution Must be a Model of the Problem it Solves.

It is also a metaphor for the so-called “Conant and Ashby Theorem” referred to in 
the sub-title.  That theorem – published in 1970 by Roger C. Conant and W. Ross 
Ashby – establishes that,

Every Good Regulator of a System Must be a Model of that System. 1

What all of this means, more or less, is that the pursuit of a goal by some dynamic 
agent (Regulator)  in the face of a source of obstacles (System) places at  least  one 
particular and unavoidable  demand on that agent, which is that the agent's behaviors 
must be  executed  in  such a  reliable  and predictable  way that  they can  serve as  a 
representation (Model) of that source of obstacles.  As a refinement to this paraphrase, 
we could specify that the particular  style of pursuit be both  optimal and  maximally 
simple,  where “optimal” means that the actualized goal is as close as possible to its 
ideal form given the circumstances, and “maximally simple” means that the agent is 
achieving this “best-attainable” goal without unnecessary expense or effort.

A careful reading of Conant and Ashby's paper2 reveals a distinction that can be 
made between such an idealized “good-regulator model”, which is really a  dynamic 
entity,  and  its  “technical  specification”,  which  we  might  call  its  control-model. 
Another  distinction  to  be  recognized  is  that  whereas  the  good-regulator  model  is 
dynamic,  the control-model  may be either static  or dynamic.   As an example of a 
static control-model, consider an inexperienced cook attempting to make a roast duck 
with the help of a recipe.   In this  case,  the system to be regulated consists of the 
various ingredients and kitchen tools to be used to create the meal, the dynamic good-
regulator model is the human being doing the cooking, and the recipe is what we are 
calling the static  “control-model”.  The recipe is a control-model because the human 
being uses it, like a technical specification, to guide (control) his behavior and thus to 
“turn himself into” (i.e. to act as-if he were) a good-regulator model.  As an example 
of  a  dynamic control-model,  consider  the  case  in  which  a  child  learns  to  use  an 
idiomatic expression such as “two wrongs don't make a right” by overhearing an adult  
use that expression in a conversation.   In this case the system to be regulated is a 

1Roger C. Conant and W. Ross Ashby, “Every Good Regulator of a System Must be a Model of that 
System,” International Journal of Systems Science, 1970, vol 1., No. 2, 89-97. 
2“A Primer For The Conant And Ashby Theorem”,  Available on the internet at 
www.goodregulatorproject.org.
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particular  portion  of  some  conversation  in  which  the  child  is  participating,  the 
dynamic good-regulator model is the child, and the dynamic control-model is the adult 
role-model.   The idea here is that the adult's behavior serves as a type of dynamic 
technical specification that the child then uses to control his or her own behavior in the 
context of the given conversation.

It is important to make these distinctions between a dynamic good-regulator model 
and its static or dynamic technical specification because otherwise the theorem appears 
to prove that the technical specification (control-model) is necessary, which is really a 
misunderstanding of the theorem.  The theorem only proves that the  good-regulator  
model is necessary, although it does appear to be an empirical fact that such technical 
specifications are also necessary, or at least extremely useful.

One objective of the present paper is to offer the key-lock and solution-problem 
formulations as useful metaphorical equivalents to this important result by Conant & 
Ashby (henceforth C&A).  But the present paper’s  primary objective is to explore a 
line of inquiry that this theorem establishes, and which, as far as I can tell, has yet to 
be explored.

In what follows, I will show how C&A's “good-regulator theorem”, despite being 
just one of potentially various necessary conditions to successful regulation, has yet a 
great deal more to say about the nature of these idealized good-regulator models3.  In 
particular, I will show that the theorem points the way to a search-algorithm (of the 
type used in the field of Operations Research) that can be implemented by a computer 
program4 and used to find excellent approximations to these idealized entities given 
certain high-level measurements  taken on the system in question and the resources 
available to regulate that system5.   Furthermore,  the analysis  leading to this  search 
algorithm will also lead us to an alternate proof of the C&A theorem which is both 
more general and allows us to assert that “Even A Decent Regulator Of A System 
Must Be A Model Of That System”.  This more general theorem has two primary 
benefits.   First  of all,  however valuable or interesting a true good-regulator model 
might  be,  any realistic  scenario has such an astronomically large search-space that 
finding such unicorns is a truly rare occurrence.  Much more likely is the discovery of 
a  decent  approximation to  the beast,  and this  more general  version of Conant  and 
Ashby's  theorem allows us to include these much more common “decent-regulator 
models” in our discussions of actual good-regulator models.  The second benefit is that 
the proof of this more general version of the good-regulator theorem is substantially 
easier for a lay-person to understand, mainly because it doesn’t rely on the Shannon 
Entropy function.  Such a simpler proof should go a long way toward making this 
important theorem accessible to a much wider audience.

In addition to these two primary results, I will also examine a number of related 
results.  One of these is a corollary which we might call a “Law of Requisite Back-Up 
Plans” the gist of which tells us that a good-regulator must have its priorities straight. 

3 http://en.wikipedia.org/wiki/Good_Regulator
4 This program is currently in development.
5If the System to be regulated and the available regulatory resources are not too complicated, then the 
search algorithm will actually find the associated ideal good-regulator models.  The problem is that most 
real-world applications will probably involve Systems that do not fulfil this simplicity criterion.
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This corollary establishes that a good-regulator must know, given a set of possible 
outcomes, which of these is its favorite, which is its second favorite, and so on, all the 
way through to its least favorite outcome.  As it pertains to us humans, it  tells us, 
contrary to what we might like to think, that our most lofty aspirations are not more 
important than what we will do if we fail to attain them.  And I will also discuss a  
principle that I have come to think of as Ashby’s First Law, or perhaps, the Any-Port-
In-A-Storm Theorem.  This result appears to explain a great deal of human behavior, 
especially our tendency to sanctify and ferociously defend even the most delusional 
ideas.  The gist of Ashby’s First Law is that any model is better than no model at all, 
which basically means that even if we can’t figure out the truth of a situation, we are 
almost always better off just making up any old thing rather than muddling around in 
the muck of our own ignorance.   If  you have ever wondered how a person could 
believe so seriously in, say, faeries or werewolves, to the point where they are willing  
to hurt themselves or someone else,  Ashby’s  First  Law may provide a meaningful 
clue.  Finally,  I will also discuss two useful metaphors for the C&A theorem, namely 
the key-lock and solution-problem metaphors  referred to above and in this paper’s 
title.  This latter metaphor, in particular, casts the C&A Theorem as a fundamental 
theorem of problem solving and as such shows us how to make meaningful progress 
toward the solution of any problem whatsoever.

After  discussing  these  topics,  I  will  turn  to  a  question  that  is  grounded  in  the 
observation that the C&A Theorem is itself a control-model (technical specification) 
for a good-regulator model.  The system to be regulated in this case is nothing other 
than the system of good- and decent-regulator models that we humans are using more 
and more to regulate our interactions with each other and the world.  Recognition of 
this fact raises the question as to why the C&A theorem is not more famous than it is. 
Given the preponderance of control-models that are used by humans (the evidence for 
this  preponderance will  be surveyed in the latter  part  of the paper),  and especially 
given the obvious need to regulate that system, one might guess that the C&A theorem 
would be at  least  as famous  as,  say,  the Pythagorean Theorem ( 2 2 2a b c+ = ),  the 
Einstein  mass-energy  equivalence  ( 2E mc= ,  which  can  be  seen  on  T-shirts  and 
bumper stickers), or the DNA double helix (which actually shows up in TV crime 
dramas and movies about super heroes).  And yet, it would appear that relatively few 
lay-persons  have  ever  even  heard  of  C&A’s  important  prerequisite  to  successful 
regulation.  This state-of-affairs strikes the present author as a problem in need of a 
solution, a lock that needs a key.  It is my hope that the present paper can contribute to 
finding that key.

Note: throughout the following discussion I will assume that the reader has studied 
Conant &Ashby’s original paper, possesses the level of technical competence required 
to understand their proof, and is familiar with the components of the basic model that 
they  used  to  prove  their  theorem,  e.g.  the  payoff  matrix,  the  outcome  mapping 

: R S Zψ × → ,  and  the  definition  of  regulation  in  terms  of  the  Shannon  entropy 
function, etc.  If the current reader does not already fit this profile but would like to, he 
or she is invited to study the references in the footnote at the end of this sentence.6

6 The reference  to  the original  paper  can  be  found in a  previous  footnote.   The paper  is  also readily 
available on the internet at  http://pespmc1.vub.ac.be/Books/Conant_Ashby.pdf.  Everything you need to 

Copyright 2009-2010 by Daniel L. Scholten

http://pespmc1.vub.ac.be/Books/Conant_Ashby.pdf


Every Good Key Must Be A Model Of The Lock It Opens Page 6 of 45

Finding Good Regulators: A Search Algorithm

In order to motivate the present discussion, we will use a concrete example which is 
organized around the following “payoff” matrix:

 

1 2 3 4 5 6

1

2

3

4

s s s s s s
r a h d g b h
r c f i e c d
r f d e b a i
r a d c e a f

ψ

The above matrix represents every possible outcome that can occur when a behavior 
from some system with behavioral repertoire { }1 2 3 4 5 6, , , , ,S s s s s s s=  combines with a 

behavior  from  some  other  system  with  behavioral  repertoire  { }1 2 3 4, , ,R r r r r=  to 

produce  outcomes  from a  set  { },  ,  ,  ,  ,  ,  ,  ,  Z a b c d e f g h i= ,  as  determined  by the 
mapping : R S Zψ × → .

In  addition,  we  assume  that  S  is  executing  its  behaviors  according  to  some 
probability distribution  ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 3 4 5 6( ) , , , , ,=p S p s p s p s p s p s p s  that  R  is 
responding  to  these  behaviors  according  to  some  conditional  distribution 

( ) ( ){ }| | : ,p R S p r s r R s S= ∈ ∈  and that together these two distributions determine, 

via the rule ( ) ( ) ( ), |i j i j jp r s p r s p s= , the following distribution for Z :

( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 3 5 4 1 4 5

1 5 3 4

2 1 2 5 4 3

1 3 2 6 3 2 4 2

2 4 3 3 4 4

2 2 3 1 4 6

1 4

1 2 1 6

2 3 3 6

, , , , ,

, , ,

, , , ,

, , , , ,

, , , ,

, , , ,

, ,

, , ,

, ,

p a p r s p r s p r s p r s

p b p r s p r s

p c p r s p r s p r s

p d p r s p r s p r s p r s

p Z p e p r s p r s p r s

p f p r s p r s p r s

p g p r s

p h p r s p r s

p i p r s p r s

 = + + +


= +

= + +

= + + +

= = + +
= + +

=

= +

= +




 
 
 
 
  


 
 
 
 
 
 
  

learn about the Shannon entropy function in order to understand C & A’s proof can be acquired by reading  
the first 26 pages (especially problem 1.6) of  Information Theory, by Robert B. Ash, 1990 (1965), Dover 
Publications, New York.  For a self-contained exposition, the reader can also consult the present author’s  
A Primer For The Conant & Ashby Theorem available at www.goodregulatorproject.org.
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Also, we can use the above distribution to calculate the Shannon Entropy associated 

with the outcomes of Z , which is given by   ( ) ( ) ( )log
z Z

H Z p z p z
∈

≡ − ∑ .   

Furthermore,  we  will  assume,  given  any  example  such  as  the  one  we  are 
considering,  that  the  distribution  ( )p S  has  been  given  to  us  as  a  set  of  fixed 
probabilities  over  which  we  have  no  control,  and  that,  on  the  contrary,  we  have 
complete freedom to set the conditional probabilities of  ( )|p R S  to any values we 
choose.  And finally, we will assume that the goal of regulator design is to set these 
conditional  probabilities  of  ( )|p R S  so  that  ( )H Z  is  made as  small  as  possible, 
given  the  constraints  imposed  by  the  mapping  : R S Zψ × → ,  in  which  case,  the 
regulator is said to be optimal.

Now, given only these assumptions, we can observe that in the most general case, 
the task of finding a regulator (i.e. a distribution ( )|p R S ) that will minimize ( )H Z  
is daunting indeed.  The problem is that the solution space, even for a relatively simple 
example such as the one we are considering, is nothing short of huge.  If all we have is 
the  option  of  grinding  through  every  possible  distribution 

( ) ( ){ }| | : ,p R S p r s r R s S= ∈ ∈  then  the  search  space  is  infinite  and  the  task  is 
impossible.  What we need is some way to reduce the search space.

In their 1970 paper, C & A showed the world how to cut that search space down to a 
much more manageable size.  In particular, they showed us a lemma (henceforth, the 
C&A lemma) which tells us that whenever R  is behaving so that ( )H Z  is as small as 
possible,  then it  must  be the case that  R  is  picking out  exactly  one outcome per  
column of the table.  In other words, their lemma establishes that optimal regulation 
can only occur via some sort of mapping from the set S  to the set Z .  Note that C&A 
chose to define model in terms of just such a mapping and we will continue with that 
convention here, although this particular “model” is not the one referred to in the title 
of their paper and, in fact, the whole purpose of regulation is make this “model” an 
especially poor one.  The idea here is that the regulator acts as a buffer between the 
system  and  the  outcomes  produced,  so  that  the  outcomes  become  a  lousy 
representation of the system.  Let’s call the mapping that creates this poor “underdog” 
model of the system :u S Z→ , where “u” stands for “underdog”.    

C&A then went on to show that by adding the economically reasonable assumption 
that  R  should achieve  as simply as possible its one outcome per column – meaning 
that in response to a given column js S∈  the same jr R∈  is always executed in order 
to produce that column’s unique outcome – then yet  a  different mapping would be 
established from S  to  R , which we will refer to here as  :g S R→  (“g” for “good 
regulator”).  It is this latter mapping that creates the model referred to by the C&A 
theorem –  the  model  that  is  the  “good  regulator”  of  the  system  being  regulated. 
Contrary  to  the  relatively  poor  “underdog”  model  referred  to  in  the  previous 
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paragraph, this good-regulator model will tend to be a fairly detailed representation of 
the system.

Now, without plugging in some actual numbers for ( )p S , we really can’t say much 
else about the example under consideration, but let’s just imagine that there is some 
example  we could  use  for  ( )p S  such  that  the  following mapping  :u S Z→  will 
minimize ( )H Z :

1 2 3 4 5 6s s s s s s
u a d d b a d↓

The implication of this mapping is that the probability distribution ( )p Z  is a much 
simpler  function of just  the column probabilities  of  ( )p S .   Let’s  illustrate  this  by 
working through an example.  Referring to the table for ( )p Z  above, we have that:

( ) ( ) ( ) ( ) ( )1 1 3 5 4 1 4 5, , , ,p a p r s p r s p r s p r s= + + +

or

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 3 5 5 4 1 1 4 5 5| | | |p a p r s p s p r s p s p r s p s p r s p s= + + +

or

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 4 1 1 3 5 4 5 5| | | |p a p r s p r s p s p r s p r s p s   = + + +   

So far, ( )p a  appears to be a function of both ( )p S  and ( | )p R S .  But the mapping 
:u S Z→  implies  that  we,  as  regulator  designers,  have  respected  the  following 

constraint on ( )|p R S :

( ) ( )1 1 4 1| | 1p r s p r s+ =  and ( ) ( )3 5 4 5| | 1p r s p r s+ = , which, in turn, means that, 

( ) ( ) ( )1 5 1 51 ( ) 1 ( )p a p s p s p s p s= ⋅ + ⋅ = + .

The reader can verify that performing this sort of analysis for each element in Z  for 
our chosen example yields the following:
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( )

( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( ) ( )
( )
( )
( )
( )
( )

1 5

4

2 3 6

,

,

0,

0,

0,

0,

0,

0

p a p s p s

p b p s

p c

p d p s p s p s

p Z p e

p f

p g

p h

p i

 = +
 

= 
 = 
 = + +  = = 
 = 
 = 
 =
 

=  

Now, we can make two observations about this state-of-affairs.  I will make them 
here with respect to our current  example,  but similar  observations can be made in 
general about every such example.  These are as follows:

1. Because the probabilities  in the distribution  ( )p Z  are  real  numbers,  they 
have a natural ordering.  That is, there is a way to rename the elements in the 
set  Z  using  indexes  such  that  { }1 2 9, ,...,Z z z z=  and 

( ) ( ) ( )1 2 9...p z p z p z≥ ≥ ≥ . To put it most generally, we can say that there 
is a mapping from the set Z  to the set of natural numbers (excluding zero), 

let’s  call  it  1:f Z → ¥ ,  such  that  { }1 2, ,..., ZZ z z z=  and 

( ) ( ) ( )1 2 ... Zp z p z p z≥ ≥ ≥ .

2. The probability  ( )p b  does not use up all of the “column probability” that it 
might use.  That is, since the outcome b is available in both columns  4s as 
well as 5s , it might have been the case that ( ) ( ) ( )4 5p b p s p s= + , but this 
did not happen.  For some reason, our optimal regulator preferred to give the 
column probability ( )5p s  to outcome a instead of to outcome b.

This natural ordering of the outcome probabilities coupled with the observation that 
an optimal regulator behaves as if it preferred some outcomes over others, suggests 
that at we can jump to the following conclusion:
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When all is said and done and we have managed to find an 
optimal regulator (i.e., a  ( )|p R S  that minimizes ( )H Z ), 
then the behavior of this optimal regulator will accord with 
at least  one “preference ranking” on the outcomes in  Z . 
Although there may be many such preference rankings, one 
of these is the mapping  1:f Z → ¥  that is determined by 
the natural ordering of the probabilities in ( )P Z .  Finally, 
this  preference  ranking  is  logically  equivalent  to  the 
optimal  regulator,  which  means  that  they  both  produce 
exactly  the  same  outcomes  and  thus  exactly  the  same 
minimized value of ( )H Z .

Now, I say that we can jump to this conclusion, but it really needs to be proven.  The 
proof relies on the following lemma which uses the same “useful property”  of the 
Shannon Entropy function that C&A used to prove their lemma:

Given some : R S Zψ × →  and a ( )|p R S  that minimizes 
( )H Z , if kz  is the outcome selected for column js , and if 

hz  is  any  other  outcome  in  the  column  js ,  then 
( ) ( )k hp z p z> .

Proof: Suppose to the contrary that  ( ) ( )k hp z p z≤ .  Then 

we can change ( )|p R S  so that hz  is selected for column 

js  instead.   Doing  so  will  increase  the  difference 
( ) ( )h kp z p z−  and thus reduce  ( )H Z  thus contradicting 

our  assumption  that  ( )H Z  is  a  minimum.   The 
contradiction proves the result.

In order to prove the main proposition under consideration, we have to show that the 
mapping 1:f Z → ¥  produces exactly the same outcomes as the distribution ( )|p R S  
that minimized the entropy function.  This has to be proven because even though a 
minimized  ( )H Z  implies 1:f Z → ¥ ,  it  is  conceivable  that  1:f Z → ¥  doesn’t 
“return the favor”.  That is, perhaps we are dealing with a simple one-way material 
conditional and not a material bi-conditional.  

Copyright 2009-2010 by Daniel L. Scholten
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To accomplish this proof, consider an arbitrary  js S∈  and suppose that  kz  is the 
outcome produced by ( )|p R S .  If hz  is any other available outcome in js , we know 

(by the lemma proven above) that  ( ) ( )k hp z p z>  which means that our preference 
ranking favors  kz  over  hz .  Since js S∈  was assumed to be arbitrary, such a result 
will hold for every column of the table which means that our preference ranking will 
produce exactly the same outcomes as ( )|p R S .  This establishes the result.

Now, how does all of this translate into a search algorithm?  To see how, we observe 
that the existence of this preference ranking implies that ( )1p z  (the largest of all the 
probabilities in ( )p Z ) is the sum of all of the column probabilities associated with the 
outcome 1z .   That  is,  whenever  1z  is available  in some column  js ,  then  ( )jp s  is 

included as an addend in the sum for ( )1p z .  Yet another way to put it is that ( )1p z  
“gobbles up” all of the column probabilities that are available to produce the outcome 

1z .  Likewise, ( )2p z  “gobbles up” whatever is leftover for 2z , and so on until nothing 
is left for the remaining outcomes and everybody else gets nothing.  This means that 
we can begin our search for an optimal regulator by creating a table of these “total 
probabilities” for each possible outcome in  Z  and then trying to identify which of 
these total probabilities is really our ( )1p z .  That’s the first step in the search.  For the 
next step we adjust our table, removing from consideration the column probabilities 
that were used to calculate ( )1p z , and then try to identify which of the remaining total 

probabilities is  ( )2p z  and so forth until there aren’t any column probabilities left to 
use.

Now, in each step I say we proceed by “trying to identify” which total probability is 
the next in the sequence.  This raises the question of the best way to accomplish this. 
There are two intuitively appealing approaches to this problem, and although they are 
both useful heuristics, it turns out that neither works in all cases.  These are as follows:

1. At  each  step  in  the  process,  choose  the  outcome  with  the  greatest  total 
probability available.

2. At each step in the process, choose the outcome that occupies the greatest 
number of columns.

I  have written a computer  program that compares both of these approaches to a 
brute-force exhaustive  search of the solution  space for relatively small  tables  (e.g. 

5R = , 7S =  and 12Z = ) and I have also tried various ways to combine them both 
and the upshot is that it appears that the only way to always find the real minimum for 
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( )H Z  is just to check every path7.  This can still be quite a large search space, but it is 
substantially less than the brute-force approach.  Furthermore,   if we organize that 
search by always beginning with the outcome with the greatest total probability, and 
then proceeding at each level with the next largest, and then the next largest, and so 
forth, we greatly increase the chances of encountering the solution sooner rather than 
later.  This approach has the added benefit of being easily convertible to a very useful 
search heuristic and I have found experimentally that limiting the search to the first 
two of these (largest and next largest probability) captures very close to every case, at 
least for the relatively small tables that I have tested8.

The Search Algorithm, Formally Stated
The purpose of the preceding discussion is to motivate and to illustrate the gist and 

justification  of  a  formal  search  algorithm  for  the  identification  of  the  underdog 
mapping(s)  :u S Z→  that  minimize(s)  ( )H Z .   This  algorithm,  which  can  be 
implemented in any high-level programming language (I have used Java), consists of 
three steps: an initialization step, an iterato-recursive step, and a completion step.  I 
will now present the complete and formal details of this algorithm.  Unfortunately, the 
completeness and formality of these details might appear at first glance as something 
of a pedagogical quagmire.  Therefore, the reader is encouraged to skim over these 
details for the time being and then read back over them more carefully as we work 
through an illustrative example.  I assure you that the following algorithm is no where 
near as complicated as it may look:

1. Initialization: this step takes as input the information contained in the payoff 
matrix  : R S Zψ × →  as  well  as  the  distribution  ( )p S  and  uses  it  to 

construct  a data  structure that we will  call ( )Total - Probability - Set  (the 
meaning of the empty parentheses will be explained in step 2.b.ii), which 
will be used as the initial input to the iterato-recursive process of step (2). 
The construction of ( )Total - Probability - Set  is accomplished as follows:

a. For  each  outcome  element z Z∈ ,  calculate ( )totp z ,  i.e.  the  “total 
probability available to the outcome z ”, as follows: for each s S∈ , 
examine  the  contents  of  the  corresponding  column  in  the  payoff 
matrix ψ  to determine if the outcome z  is available in that column. 

7 Strictly speaking there are ways to eliminate a few additional paths, but I’m trying to summarize the gist 
of the process at this point; these refinements will be covered shortly.  In any case, it may be that these 
refinements won’t enhance the performance of a computer program that implements them to a degree that 
would justify the additional complexity that they add to such a program.
8 I have to restrict my tests to relatively small tables because my “control population” is generated with a 
brute-force, every-possible-combination algorithm and if the tables get too big, the time required to run 
through all of these possibilities becomes too long.
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If  it  is  available,  then include  ( )p s  as  an addend in the sum for
( )totp z .

b. Place  each  of  these  total-probability elements  in  an  ordered  set, 
sorted top to bottom from largest to smallest.  These can be indexed 
as ( ) ,0tot j

p z ,   for  { }1,2,3,...j ∈ ,  where  ( ) 1,0totp z  is  the  largest, 

( ) 2,0totp z  the second largest,  etc.   This  descending-ordered  set  of 
total-probability  elements  is  what  we  are  calling 

( )Total - Probability - Set .  

2. Iterato-Recursive process: the goal of this process is to produce a list of 
values for ( )H Z  which are candidates for the smallest possible such value, 
which will be determined in (3), the completion step, below.  Toward this 
end, various distributions for ( )p Z  are calculated, which are in turn used to 

calculate the values for ( )H Z .  I’m calling this an iterato-recursive process 
because it is comprised of an iterative process that occurs within a larger 
recursive  process.   By definition,  a  recursive process is  any process  that 
includes an execution of itself, which creates a sequence of recursion-levels. 
We will refer to these as the 1st recursion-level, 2nd recursion-level, etc., and 
in the general case, the kth recursion-level.  Furthermore, within each of these 
recursion-levels occurs an iterative process that performs an identical set of 
operations  over  a  sequence  of  distinct  elements  (to  be  explained 
momentarily).  We will index these as element1,k, element2,k, etc., and in the 
general case, elementj,k, where the index k indicates the recursion-level inside 
of which these iterations are performed.

Now,  the  input  to  the  kth recursion-level,  which  we  will  call 
( )1 2 1, ,..., kTotal - Probability - Set j j j −  (the  sequence  1 2 1, ,..., kj j j −  will  be 

explained  in  step  2.b.ii)  is  either  the  output  from  step  (1)  (i.e. 
( )Total - Probability - Set )  or  else  the  output  from the  (k-1)th recursion 

level.  On the other hand, the output from the kth  recursion-level is either a 
value  for ( )H Z ,  or  else  a  value  for  ( )kp z along  with 

( )1 2, ,..., kTotal - Probability - Set j j j ,  where  the  method  used  to  produce 
this latter  Total-Probability-Set is explained below in sub-step 2.b.ii.   To 
begin  this  iterato-recursive  process,  the  input 

( )1 2 1, ,..., kTotal - Probability - Set j j j −  is first examined to see if it contains 
any non-zero total-probability elements (where the fact that it might will be 
explained in sub-step 2.b.ii). The answer to this question determines which 
of the following is executed:

a. If the input  ( )1 2 1, ,..., kTotal - Probability - Set j j j −  contains no non-
zero total-probability elements the process has reached the end of a 
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search-path.  In this case the distribution  ( )p Z  is complete and is 

used to calculate a value for  ( )H Z  which is stored in a list, which 
will later become the input to the completion step (3, below).  After 
calculating and storing the value for ( )H Z , the process returns to the 
(k-1)th recursion  level  where  it  resumes  its  iterations  on  sub-step 
(2.b).

b. If the  input  ( )1 2 1, ,..., kTotal - Probability - Set j j j −  is  found  to 
contain at least one non-zero total-probability element, then two tasks 
(i  and  ii,  explained  below)  are  executed  for  each non-zero  total-
probability  element  in  ( )1 2 1, ,..., kTotal - Probability - Set j j j − , 

beginning first  with the  largest  such element,  i.e.  ( ) 1, 1tot k
p z

− ,  and 

proceeding to the second largest, i.e. ( ) 2, 1tot k
p z

−  and so forth.  These 
are the “elements”, referred to above, that are processed iteratively 
and  which  are  indexed  in  general  as ( ) , 1tot j k

p z
− .   Note  that  the 

elements with value of zero are excluded.  When both of tasks i and ii 
have  been  performed  for  each  such  non-zero  total-probability 
element, the kth recursion level is deemed completed and the process 
returns to the (k-1)th recursion level where it resumes its iterations on 
sub-step (2.b) at that level.

Now,  the  two  tasks  that  are  performed  in  each  iteration  are  as 
follows:

i. On the (j,k)th iteration, the outcome z  that is associated with 
( ) , 1tot j k

p z
−   is assigned the index  k, meaning that  ( )kp z  is 

assigned the value ( ) , 1tot j k
p z

− .  The significance of this is that 

( ) , 1tot j k
p z

−  is  assumed to be the  kth largest  probability in a 

distribution  ( )p Z  that will be used to calculate the smallest 

value for ( )H Z .  Whether this assumption will turn out to be 
correct will be tested below in the completion step (3).  This 
value  for   ( )kp z  is  stored  in  a  list  that  represents ( )p Z  
which,  when complete,  will  be used  as  input  into sub-step 
(2.a).  

ii. Next,  the  process  produces 
( )1 2, ,..., kTotal - Probability - Set j j j  and  sends  it  as  input 

into the  (k+1)th  recursion-level.  Note that the invocation of 
the (k+1)th  recursion-level temporarily interrupts the iterative 
process  occurring  on  the  kth recursion-level,  but  this  kth 
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recursion-level  iterative  process  will  be  resumed  upon 
completion of the (k+1)th recursion-level.

Now,  regarding  the  production  of 
( )1 2, ,..., kTotal - Probability - Set j j j ,  this  is  accomplished 

by  first  making  a  clone  (copy)  of 
( )1 2 1, ,..., kTotal - Probability - Set j j j −  and then deleting the 

total-probability  element  ( ) , 1tot j k
p z

−  that  was  used  in  sub-

step (2.b.i) as the candidate for kz .  Next, the remaining total-
probability elements are adjusted by removing from each of 
their respective summations, any of the column probabilities 
that were used to calculate ( ) , 1tot j k

p z
− .  Finally, the remaining 

total-probability  elements  are  sorted,  top  to  bottom,  from 
largest  to  smallest,  re-indexed  to  reflect  both  the  new 
ordering  and  the  kth recursion-level,  and  this  freshly 
processed,  reorganized  “clone”  is  then  renamed 

( )1 2, ,..., kTotal - Probability - Set j j j .

Now  it  is  time  to  explain  the  meaning  of  the  sequence
1 2, ,..., kj j j .  You may have noticed that it gets longer with 

each recursion-level, which is to say that the index  k tracks 
these recursion-levels.   On the other  hand,  the variable  ij  
tracks the iteration that was interrupted in order to begin the 
(i+1)th recursion-level.   Thus,  for  example, 

( )3,4,2Total - Probability - Set  is  the  input  to  the  4th 

recursion-level,  and  was  produced  after  interrupting, 
respectively, the 3rd iteration of the 1st recursion-level, the 4th 

iteration of the 2nd recursion-level, and the 2nd iteration of the 
3rd recursion-level.   This  will  become  clearer  as  we work 
through a couple of specific examples, below.

3. Completion: In this step the list of ( )H Z  values that were produced by sub-
step (2.b) is searched for the smallest (minimized) value.  The identification 
of this smallest value for ( )H Z  completes the algorithm.
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Working Through An Example
The completeness and formality of the above presentation of this algorithm  may 

have left the reader feeling a little baffled as to just how it works.   As I said, it’s really 
not as complicated as it might appear.  The following example should go a long way 
toward illustrating its fundamental simplicity and efficacy.

We will continue with the illustrative example used earlier, e.g. the payoff matrix 
: R S Zψ × →  and the distribution ( )p S , reproduced here:

1 2 3 4 5 6

1

2

3

4

s s s s s s
r a h d g b h
r c f i e c d
r f d e b a i
r a d c e a f

ψ

( ) ( ) ( ) ( ) ( ) ( ){ }1 2 3 4 5 6( ) , , , , ,P S p s p s p s p s p s p s=

And in order to make the following discussion more concrete, we will arbitrarily 
assign the following numbers to the probabilities in ( )P S  as follows:

( )

( )
( )
( )
( )
( )
( )

1

2

3

4

5

6

0.05,

0.20,

0.15,

0.10,

0.30,

0.20

p s

p s

p s
p S

p s

p s

p s

 =
 

= 
 = =  

= 
 = 
 = 

The three steps of the algorithm are applied as follows: 

Initialization Step:

1. For each element z Z∈ , calculate ( )totp z , i.e. the sum of all of the column 
probabilities that are available to that element and list these with appropriate 
(j,0) indexes  in  a  descending-ordered  table  to  be  called 

( )Total - Probability - Set .  For our chosen example,  the table we would 
create would be the following:
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( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

2 3 61,0

1 3 52.0

1 2 63,0

1 54,0

4 55,0

6,0

0.20 0.15 0.20 0.55,

0.05 0.15 0.30 0.50,

0.05 0.20 0.20 0.45,

0.05 0.30 0.35,

0.10 0.30 0.40,

Total Probability Set

p d p s p s p s

p c p s p s p s

p f p s p s p s

p a p s p s

p b p s p s

p h p

− −

= + + = + + =

= + + = + + =

= + + = + + =

= + = + =

= + = + =

= ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2 6

2 67,0

3 48,0

49,0

0.20 0.20 0.40,

0.20 0.20 0.40,

0.15 0.10 0.25,

0.10,

s p s

p i p s p s

p e p s p s

p g p s

+ = + =

= + = + =

= + = + =

= =

The above table  is  our  initial  input  into  the  subsequent  iterato-recursive 
process.

Iterato-Recursive Process:

2. First, as instructed by the algorithm, we examine ( )Total - Probability - Set  
to see if it contains any non-zero total-probability elements, which it clearly 
does  (the  alternative  is  trivial  and  wouldn’t  have  made  a  very  good 
illustrative example).  Thus we execute sub-step (2.b) of the algorithm by 
performing tasks 2.b.i and 2.b.ii over each of the non-zero total-probability 
elements in ( )Total - Probability - Set , beginning with the largest at the top 
of the list and working our way down.  We will not walk through each of 
these  iterations  here  because  they  will  combine  multiplicatively  with  the 
iterations in subsequent recursion-levels and produce, needless to say, far too 
many examples than we actually need to illustrate the algorithm.  But we 
will begin with at least the first which is ( ) 1,0

p d .  Task 2.b.i requires that we 

set  1z d=  and ( ) ( )1 1,0
0.55p z p d= = , which is to say that we hypothesize 

that  ( )H Z  will  be  minimized  with  a  distribution  ( )p Z  in  which 
( ) ( )1 1,0

0.55p z p d= = .  At this point this is only a hypothesis, although in 
the tests I have done with relatively small tables it turns out to be true in the 
large  majority  of  cases.   The  whole  purpose  of  the  search  algorithm, 
however, is to find all of the cases and this can only be done by checking all 
of the relevant candidates, hence the iterative part of this step.
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Next,  we  store  this  hypothesized  value  for  ( )1p z  in  a  list,  e.g. 

( ) ( ){ }1 0.55,....p Z p z= = ,  and proceed with task 2.b.ii.   In  this  task we 

make  a  clone  (copy)  of ( )Total - Probability - Set ,  delete  ( ) 1,0
p d  and 

adjust  the  remaining  total-probability  elements  by  removing  from  their 
respective summations any column probability that was used in the sum for 

( ) 1,0
p d , i.e.  ( )2 0.20p s = ,  ( )3 0.15p s =  and  ( )6 0.20p s = .  Then we re-

index  and  re-sort  the  total-probability  elements,  re-name  the  clone  to 
( )1Total - Probability - Set , and finally we interrupt the 1st recursion-level’s 

iteration  and  invoke  the  2nd recursion-level,  using 
( )1Total - Probability - Set  as the input.

Let’s walk through this one step at a time.  First we make the clone:

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 3 61,0

1 3 52.0

1 2 63,0

1 54,0

4 55,0

 (clone)

0.20 0.15 0.20 0.55,

0.05 0.15 0.30 0.50,

0.05 0.20 0.20 0.45,

0.05 0.30 0.35,

0.10 0.30 0.40

Total Probability Set

p d p s p s p s

p c p s p s p s

p f p s p s p s

p a p s p s

p b p s p s

− −

= + + = + + =

= + + = + + =

= + + = + + =

= + = + =

= + = + =

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2 66,0

2 67,0

3 48,0

49,0

,

0.20 0.20 0.40,

0.20 0.20 0.40,

0.15 0.10 0.25,

0.10,

p h p s p s

p i p s p s

p e p s p s

p g p s

= + = + =

= + = + =

= + = + =

= =

Now we delete ( ) 1,0
p d  from the clone, and remove the column probabilities

( )2 0.20p s = ,  ( )3 0.15p s =  and  ( )6 0.20p s =  from where ever else they 
appear in the clone, which gives us:
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( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )
( )
( ) ( )
( ) ( )

1 52.0

13,0

1 54,0

4 55,0

6,0

7,0

48,0

49,0

 (clone, partially adjusted)

0.05 0.30 0.35,

0.05,

0.05 0.30 0.35,

0.10 0.30 0.40,

0,

0,

0.10,

0.10,

Total Probability Set

p c p s p s

p f p s

p a p s p s

p b p s p s

p h

p i

p e p s

p g p s

− −

= + = + =

= =

= + = + =

= + = + =

=

=

= =

= =

Now we re-sort and re-index the total-probability elements that remain in 
the clone and re-name the clone to ( )1Total - Probability - Set , thus:

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )
( )

4 51,1

1 52.1

1 53,1

44,1

45,1

16,1

7,1

8,1

1

0.10 0.30 0.40,

0.05 0.30 0.35,

0.05 0.30 0.35,

0.10,

0.10,

0.05,

0,

0,

Total Probability Set

p b p s p s

p c p s p s

p a p s p s

p e p s

p g p s

p f p s

p h

p i

− −

= + = + =

= + = + =

= + = + =

= =

= =

= =

=

=

Note that the ( )1  suffixed to the name of this Total-Probability-Set indicates 
that it was created as input to the 2nd recursion-level by interrupting the 1st 

iteration of the 1st recursion-level.

3. Now, we interrupt the iterative process of the 1st recursion-level and begin 
the 2nd recursion-level using ( )1Total - Probability - Set  as the input.  (Note 
that if we were to walk through all of the iterations at each recursion-level 
then we would resume the 1st recursion-level iterative process only when the 
2nd recursion-level has been completed).  Because it contains non-zero total-
probability elements this means we execute step (2.b), iterating, as we are in 
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the process of doing for the 1st recursion-level, from the top to the bottom of 
the  elements  in ( )1Total - Probability - Set .   Thus,  we  begin  the  2nd 

recursion-level’s iterative process with ( ) 1,1
p b  and hypothesize that  2z b=  

and thus that  ( ) ( )2 1,1
0.40p z p b= = .   Thus,  again,  we are  assuming that 

( )H Z  will  be  minimized  with  a  distribution  ( )p Z in  which 
( ) ( )2 1,1

0.40p z p b= = .  As we did in the 1st recursion-level, we store this 

hypothesized  value  for   ( )2p z  in  the  list 

( ) ( ) ( ){ }1 20.55, 0.40,....p Z p z p z= = = .

In task (2.b.ii) we make a clone (copy) of ( )1Total - Probability - Set , delete 
( ) 1,1

p b  and  adjust  the  remaining  total-probability  elements  by  removing 
from their respective summations any column probability that was used in 
the sum for ( ) 1,1

p b , i.e. ( )4 0.10p s =  and ( )5 0.30p s = .  Then we re-index 
and  re-sort  the  total-probability  elements,  re-name  the  clone  to 

( )1,1Total - Probability - Set ,  and  finally  we  interrupt  the  2nd recursion-
level’s  iterative process and invoke the 3rd recursion-level,  using as input 

( )1,1Total - Probability - Set  which  (the  reader  can  check)  appears  as 
follows:

( )
( ) ( )
( ) ( )
( ) ( )
( )
( )
( )
( )

11,2

12.2

13,2

4,2

5,2

6,2

7,2

1,1

0.05,

0.05,

0.05,

0,

0,

0,

0,

Total Probability Set

p a p s

p c p s

p f p s

p e

p g

p h

p i

− −

= =

= =

= =

=

=

=

=

4. Because  ( )1,1Total - Probability - Set  has  non-zero  total-probability 
elements  we  initiate  the  iterative  process  beginning  with 

( ) ( )11,2
0.05p a p s= = .   This  means  that  we  set  3z a=  and 

( ) ( )3 1,2
0.05p z p a= = .  Also, we store this information in the list (which is 

now a complete probability distribution since its elements sum to unity):
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( ) ( ) ( ) ( ){ }1 2 30.55, 0.40, 0.05p Z p z p z p z= = = =

Next  we  clone  ( )1,1Total - Probability - Set  and  use  it  to  make 
( )1,1,1Total - Probability - Set , which (the reader should check) appears as 

follows:

( )
( )
( )
( )
( )
( )
( )

1.3

2,3

3,3

4,3

5,3

6,3

1,1,1

0,

0,

0,

0,

0,

0,

Total Probability Set

p c

p f

p e

p g

p h

p i

− −

=

=

=

=

=

=

5. Now  we  interrupt  the  3rd recursion-level’s  iterative  process  and  use 
( )1,1,1Total - Probability - Set  as input to the 4th recursion-level.  This time 

we see that there are no non-zero total-probability elements, which means we 
execute step (2.a).  In other words, we have come to the end of our current 
search path, as also indicated by the previously noted fact that  ( )p Z  is a 

complete probability distribution, and we can now use ( )p Z  to calculate a 

value for ( )H Z .  This value is calculated thus:

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20.55 log 0.55 0.40 log 0.40 0.05 log 0.05 1.219241H Z = + + ≈

As I mentioned earlier, as far as I have been able to ascertain there is really 
no way to know if this is the absolute minimum value for the entropy that 
could be attained for the given example.  In this example we have completed 
just one of many possible search paths, and in order to know if the value 
obtained above is really the minimum, all of these paths have to be explored 
and the resulting candidate values for ( )H Z  must be compared in order to 
determine  the  true  minimum.   The  search  algorithm detailed  above  will 
accomplish exactly that, and it will do so much more quickly than a brute-
force  approach.   On the  other  hand,  in  the  simulations  I  have  run  with 
relatively small tables, this first value has most often turned out to be the 
minimum, and when it isn’t, it’s very close to the actual minimum.  Thus, 
the search-algorithm presented here is easily converted to a search heuristic, 
simply by limiting the number of iterations  performed at each recursion-
level.  In the example we just completed we performed just one iteration per 
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recursion-level.   However,  for the sake of illustration,  let’s  quickly walk 
through another.

6. Step (2.a) now requires that we store the value that we calculated for ( )H Z  
(we’ll just leave it where it is on the page above) and then return to the 3 rd 

recursion-level in order to resume that level’s iterative process.  We won’t 
actually do this because a glance at the table shows us that the remaining 
iterations will produce the exact same value for ( )H Z .  Instead, we’ll jump 
ahead to the end of those 3rd recursion-level iterations,  at  which point we 
return to the 2nd recursion-level to continue with the iterative process at that 
level.  Note that in order to make this shift up two levels we have to restore 

( )p Z  to its form at that level, which means we have to remove the values 

we  calculated  for  ( )2p z  and  ( )3p z .   Thus,  we  have  that 

( ) ( ){ }1 0.55,...p Z p z= = .

At  the  2nd recursion-level  we  are  processing  ( )1Total - Probability - Set  
which we can reproduce here:

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )
( )

4 51,1

1 52.1

1 53,1

44,1

45,1

16,1

7,1

8,1

1

0.10 0.30 0.40,

0.05 0.30 0.35,

0.05 0.30 0.35,

0.10,

0.10,

0.05,

0,

0,

Total Probability Set

p b p s p s

p c p s p s

p a p s p s

p e p s

p g p s

p f p s

p h

p i

− −

= + = + =

= + = + =

= + = + =

= =

= =

= =

=

=

Now, the first iteration at this level hypothesized that 2z b= , and now we 
will move down and take the next largest total-probability element in the list 
which  is  ( ) ( ) ( )1 52.1

0.05 0.30 0.35p c p s p s= + = + = .   This  time  we  set 

2z c=  and  thus  ( ) ( )2 2.1
0.35p z p c= = ,  which  means  that 

( ) ( ) ( ){ }1 20.55, 0.35...p Z p z p z= = = .  Next, we perform task (2.b.ii) on 

( )1Total - Probability - Set  to  construct  ( )1,2Total - Probability - Set , 
which is as follows:
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( )
( ) ( )
( ) ( )
( ) ( )
( )
( )
( )
( )

41,2

42,2

43,2

4,2

5,2

6,2

7,2

1,2

0.10,

0.10,

0.10,

0,

0,

0,

0,

Total Probability Set

p b p s

p e p s

p g p s

p a

p f

p h

p i

− −

= =

= =

= =

=

=

=

=

7. Once again, we interrupt the 2nd iteration of the 2nd recursion-level and begin 
the 3rd recursion-level iterations, using as input ( )1,2Total - Probability - Set
.  Since we are beginning a totally new recursion-level we begin with the 
first  iteration  in  that  level,  i.e.  ( ) 1.2

0.10p b = .   Thus,  we set  3z b=  and 
( ) ( )3 1.2

0.10p z p b= = , which we store in

( ) ( ) ( ) ( ){ }1 2 30.55, 0.35, 0.10p Z p z p z p z= = = =

Next we perform task 2.b.ii on ( )1,2Total - Probability - Set  in order to 

produce ( )1,2,1Total - Probability - Set , which appears as follows:

( )
( )
( )
( )
( )
( )
( )

2,2

3,2

4,2

5,2

6,2

7,2

1,2,1

0,

0,

0,

0,

0,

0,

Total Probability Set

p e

p g

p a

p f

p h

p i

− −

=

=

=

=

=

=

8. Taking ( )1,2,1Total - Probability - Set  as input to the 4th recursion-level, we 
see  that  once  again  (both  because  there  are  no  non-zero  total-probability 
elements and because ( )p Z  is a complete probability distribution) we have 

come to the end of a search path and can calculate another value for ( )H Z :

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20.55 log 0.55 0.35 log 0.35 0.10 log 0.10 1.33667H Z = + + ≈
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The  algorithm  directs  us  to  store  this  value  for  ( )H Z  along  with  the  one  we 
obtained earlier  and then to return to the 3rd recursion-level  to resume that  level’s 
iterative process.  A quick glance at  ( )1,2Total - Probability - Set  reveals that doing 

so will only produce the exact same value for ( )H Z .  In any case, having worked our 
way through two complete search paths will hopefully have accomplished the goal of 
clarifying in the reader’s mind the way this algorithm works.  The last step of the 
algorithm, the completion step, is straight forward.  The list of values for ( )H Z  that 
were accumulated in the iterato-recursive step is searched for the absolute smallest. 
Clearly there will be at least one of these, but often there will be more than one.

Finding Excellent Approximations to Ideal Good-Regulator Models
Although the above algorithm is much more efficient than any brute force search 

approach, even a moderately complex system will probably have a search space that 
will simply be too large to completely cover in any practical length of time.  Even in  
such  cases,  however,  the  algorithm  is  useful  because  the  very  first  step  in  the 
algorithm will  always  yield  an excellent  approximation  to the ideal  good-regulator 
model.  This first step can be achieved very rapidly even with very complex systems,  
and depending on how much search time is available to continue past the first step, the 
algorithm  has  a  good  chance  of  turning  up  improvements  on  that  excellent 
approximation.

Real-World Applications: Goals for Future Research
This completes our current discussion of the search algorithm.   From here I can see 

three logical next steps to take along this line of inquiry.  The first step, clearly, is to 
write  a  computer  program to  implement  this  search  algorithm.   Although  I  have 
already  completed  various  prototypes  of  such  a  program and  have  used  these  to 
answer  various  questions  regarding  the  performance  of  the  basic  algorithm  in  an 
informal  way,  I  still  have  a  good  deal  of  programming  and  testing  to  do  in  this 
direction.

The second and third steps are to show how such a computer program can be used to 
solve, on the one hand, problems for which we already have solutions, and on the 
other,  new problems which are currently unsolved.  The taking of these two steps 
obviously  requires  the  completion  of  the  programming  step.   Regarding  the 
plausibility of success on these second and third steps, I can only point out that the 
input  to  the  search  algorithm  can  be  obtained  at  a  very  high  level.   Only  the 
distribution  ( )p S  and  the  mapping  : R S Zψ × →  need  to  be  specified.   The 
algorithm will calculate the “underdog” mapping :u S Z→  from which it is a simple 
matter to find the “good regulator” mapping :g S R→ .  These sorts of measurements 
are well within the reach of current measurement technologies and resemble the sorts 
of measurements made, for example, in the field of Operations Research.  In short, I 
see no reason to hesitate in the taking of these next three logical steps along the line of  
inquiry  established  by  the  Conant  and  Ashby  theorem.   Although,  as  for  any 
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investigation, there can be no guarantee that taking these steps will produce anything 
useful,  in  my  opinion  the  available  evidence  warrants  a  fairly  high  degree  of 
confidence that it will.
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Even Decent Regulators Must Be Models 
We will now turn our attention to the more general version of the Good-Regulator 

Theorem.  As discussed in the introduction, the value of this theorem is two-fold.  First 
of  all,  the  type  of  idealized,  maximally  optimal  and  simple  good-regulator  model 
described  by the  C&A theorem is  a  difficult  thing  to  find,  even with  the  search-
algorithm described in the previous pages.  The fact is that the overwhelming majority 
of  system-regulators  that  exist  in  the  world  are  really  just  decent  to  excellent 
approximations to their ideal versions.  It would be nice to understand the relationship 
between  these  sorts  of  effective-but-not-quite-perfect  regulators  and  their  ideal 
counterparts referred to by the C&A theorem, and it is this more general version of the 
good-regulator theorem that makes the connection.  Secondly, the proof of this more 
general version is extremely simple and thus has great pedagogical value.  Whereas 
C&A's theorem is probably beyond the lay-person's ability to understand without a 
good deal of training, the version of this theorem we are about to examine requires 
little more than the ability to read and count.  Such a simpler and more general version 
should go a long way toward making the Good-Regulator Theorem accessible to a 
wider audience.

  The idea for this version of C&A's theorem comes partly from acknowledging the 
role played in C&A’s original proof by the lemma that they used to establish what I 
am calling the “underdog” mapping :u S Z→ .  As far as I can see, the role of their 
lemma  is  nothing  more  or  less  than  to  establish  that  mapping,  and  as  regulator 
designers we are free to constrain the regulator to such a mapping for any reason at  
all, not simply because we want to minimize the entropy.  I think that in the most 
general  case,  we  could  just  assume that  there  is  some  sort  of  justification  for 
constraining the regulator to behave according to an underdog mapping, i.e.,  that a 
change in outcome can only arise from a change in column, and that we could make 
this assumption regardless of any given outcome’s impact on the entropy function. 
Another way to put it is that we can set aside the entropy function and open the door to 
other ways to define the idea of “successful regulation”.  The only criterion we need to 
fix, at this point, is that whatever else it does, it must obey some sort of an “underdog” 
mapping :u S Z→ .     Then  the  only  other  assumption  we  would  need  is  the 
economical one that the regulator should be as simple as possible.  Such an approach 
would have maximum generality and be so simple that a child could understand it.

But there is also slightly less general way that has widespread applicability and that 
still  doesn’t  require  any  sophisticated  mathematics  (such  as  the  Shannon  Entropy 
function).  This version of the theorem posits that a regulator is optimal to the extent 
that it is selecting outcomes from Z  according to a specified preference ranking on Z  
(i.e.,  some  mapping 1:f Z → ¥ ).  Note  that  this  definition  of  successful  regulation 
does  not  require  the  entropy  function  and  thus  it  does  not  require  that  we  know 
anything about ( )p S  or ( )p Z .  All we need to know is that some outcome 1 ∈z Z  is 
said to be the “best” outcome, 2z  is “second best”, and so forth.  We will say that R  is 
behaving optimally as long it responds to  S  with respect to this preference ranking. 
Now, if we also require that it achieves this result as simply as possible, then it turns 
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out that R  will also be conducting itself according to some mapping :g S R→  (i.e., 
R  will be a model of S ).

The proof is nearly trivial and requires only the recognition that no matter what S  
does, there will always be a “best available outcome”, as defined by the preference 
ranking,  and  that  therefore  there  could  never  be  a  rational  justification  for  R  to 
choose, say, that “best available” outcome on some occasions and some “less than best 
available”  on others.   Thus,  R  will  always  choose just  one outcome per  column, 
which  establishes  the  underdog  mapping  : →u S Z .   From there,  the  economical 
simplifying assumption then establishes the good-regulator mapping :g S R→ .

One point we can recognize here is that C&A's Good-Regulator Theorem is actually 
a special case of this “preference ranking” version.  Although C&A do not specifically 
refer to such a preference-ranking, it is implicit in their discussion.  That is a fairly 
strong claim, but it was proven several pages back when I showed that any ( )|p R S  

that  minimizes  ( )H Z  is  logically  equivalent  to  the  preference  ranking  that  is 

established by the natural  ordering of the probabilities  in  ( )p Z  that  were used to 

calculate that minimized value for ( )H Z .  The thing to notice here is that whenever a 
regulator manages to minimize the entropy function, it is only able to do so because it 
is selecting its outcomes according to a particular preference ranking that allows it to 
do so.

Another point to recognize is that although the proof of this more general version of 
the  Good-Regulator  Theorem  is  nearly  trivial,  the  theorem  itself  is  profoundly 
important because the type of  regulatory process it describes – possibly sub-optimal 
and driven by a preference-ranking – is ubiquitous throughout the biological world in 
general and throughout the world of human behavior in particular9, vastly more so than 
the type of idealized maximally optimal regulator described by C&A's version.  The 
main  difference  between  the  two  is  that  this  more  general  version  ignores  the 
importance  of  stability.   C&A's  version  places  the  important  constraint  on  the 
regulator  that  its  preference-ranking maximally  stabilize the outcomes  it  produces. 
Such stability is almost always important to the very integrity of the regulator – any 
regulator that ignores the stability requirement runs the risk of self-destruction.  On the 
other  hand,  the  requirement  that  the  regulator  achieve  the  maximum amount  of 
stability that is possible under the given circumstances has the unfortunate effect of 
obscuring  the  theorem's  relevance  to  any discussion  of  real-world  regulators.   By 
ignoring this criterion on the preference-ranking, the more general version allows us to 
use  the  Good-Regulator  Theorem  in  reference  to  all  of  the  almost-certainly  sub-
optimal regulator processes we see in the world.  Of course, this increased generality 
also means that the theorem applies to regulators that might destroy themselves with 
their so-called “successful” regulation, but because they do tend to destroy themselves, 
we don't encounter very many of those.

9The process of Natural Selection is just one really important example that explains how species come to 
represent their habitats.  From the domain of human behavior, our efforts to “get our priorities straight” 
reflect an implicit understanding of the “Law of Requisite Back-up Plans”, discussed in the next section.
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A Law of Requisite Back-Up Plans

Another result that drops out of this analysis is something I have come to think of as  
“The Law of Requisite Back-Up Plans”.  Whether it is actually a law or perhaps just 
an axiom of regulation depends on whether we want to define regulation in terms of 
minimizing the entropy function or in terms of a preference ranking on the outcomes. 
If we define it as a preference ranking on the outcomes, then we are simply assuming 
it as an axiom, but if we define regulation in terms of the entropy function, then it is 
deducible as an actual law, which can be stated as follows:

The Law of Requisite Back-Up Plans
Successful regulation requires the  prior establishment of a 
complete  set  of  contingency  plans  over  the  set  of  all 
possible outcomes Z .

In this context, a  “contingency plan” is simply a rule that specifies, for any given 
outcome z Z∈ , the next best outcome to accept in case the outcome z is not available. 
Thus, “a complete set” of such contingency plans, defined “over the set of all possible 
outcomes Z ,” would provide such a “back-up” plan for each outcome in Z .  That this 
law  should  hold  (provided  we  have  defined  successful  regulation  as  minimized 
entropy)  can  be  seen  by  recognizing  the  logical  equivalence  of  such  a  set  of 
contingency plans and a preference ranking over the outcomes in Z .  That is, to assert 
that outcome 1z  is preferable to outcome 2z , which, in turn, is preferable to outcome 3z
, and so forth, is to say nothing more or less than that outcome 2z  is the “contingency 
plan” for outcome 1z , that outcome 3z  is the contingency plan for outcome 2z , etc.  Of 
course,  if  we  define  successful  regulation  in  terms  of  such  a  preference  ranking 
regardless of its impact on the entropy function, then the above law is reduced to the 
status of an axiom.

Part of the utility of this law is that it clarifies a major responsibility of anyone who 
would try to design a successful regulator.  What it tells us is that it is not enough just 
to concern ourselves with what the possible outcomes are, or even with what the most 
desirable outcomes are.  In order to design a successful regulator, not only do we have 
to know what all of the outcomes are, but we also have to rank them all with respect to 
each other.

This  runs  counter  to  the  popular  advice  that  places  great  emphasis  on so-called 
“positive thinking” and focusing only on our highest aspirations.  “Don’t dwell on the 
negative”, “Keep your eyes on the prize” and so forth.  The Law of Requisite Back-Up 
Plans tells us that if we really want to be successful, we need to step back and take in a 
larger view.  It isn’t enough to focus only on our highest aspirations.  We must know 
in advance what we will do if our loftiest goals just aren’t possible.  
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Ashby’s First Law: The Any-Port-In-A-Storm Theorem
The C&A theorem specifies a necessary condition for the successful regulation of 

any system. As such, it can be cast in the logical form of a material conditional (i.e. “if 
P then Q”):

If a system is being optimally and most simply regulated,  
then some model of that system is driving the regulation.

This is a simple but important point.  The C&A theorem is not a sufficient condition 
for successful regulation, nor is it any sort of promise that the theorem’s converse (the 
“if Q then P” version) might  hold for any given case.  The converse of the C&A 
theorem would be:

If a model of a system is driving its regulation, then that  
system is being optimally and most simply regulated.

It is important to keep the distinction clear between these two propositions, the first 
of which is true, while the second is maybe true but maybe false, depending on the 
particular  model  that  is  driving  the  regulation.  This  point  really  needs  to  be 
emphasized because despite the profound utility of the C&A theorem, its status as 
necessary  and  not  sufficient  condition  (let’s  be  frank  about  it)  is  a  bit  of  a  
disappointment.   I  say  that  somewhat  facetiously,  of  course,  because  my  own 
assessment of this theorem (in case it isn’t obvious) borders on the kind of dogmatic 
reverence that is usually reserved for prophetic scripture.  But let’s face it, as useful as 
it is to specify any given prerequisite or necessary condition to achieve some valued 
objective, what we would really like more than anything is the complete set of all the 
prerequisites, which is to say, the sufficient condition and the C&A theorem falls far 
short of such a thing.  This state-of-affairs is perfect for provoking the kind of wishful 
thinking that might otherwise blind us to the way the world really works, thus tricking 
us into misunderstanding the C&A theorem.

On the other hand, there is a proposition which, though not really the converse of the 
C&A theorem, bears a useful resemblance to it, and it is this proposition that I am 
calling Ashby’s First Law, or the Any-Port-In-A-Storm theorem.  Perhaps the simplest 
way to put it is as follows:

Any model is better than no model at all
This result follows from a basic property of the entropy function that in turn follows 

from the facts  that  1 log1 1 0 0⋅ = ⋅ =  and also that  for  the  purposes  of  the  entropy 
function, the quantity 0 log 0⋅  is defined to be zero.  Thus, for any discrete probability 
distribution  { }1 2, ,..., nP p p p= ,  such  that  0 or 1, for all i ip p P= ∈ ,  we  have  that 
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( )1 2
1

, ,..., log 0
n

n i i
i

H p p p p p
=

= − =∑ .   Now,  let’s  consider  a  specific  example  as 

represented by the following table:

1 2 3 4 5 6

1

2

3

4

s s s s s s
r b e d g b h
r c f i e g d
r f d e b a i
r a d c e i f

ψ

One thing to notice about this example is that there are no duplicate outcomes in any 
of the rows, although there are in some of the columns.  This is a restriction that we 
did not make in our previous discussion of the search algorithm.  The result of this 
assumption is that the following relationship, the utility of which will be made clear in 
a moment, holds:

( ) ( )| |H S R H Z R=

To  motivate  and  illustrate  what  follows,  let’s  begin  by  recalling  that when  a 
regulator is behaving in accord with a mapping :h S R→ , the associated conditional 
distribution that defines the regulator,  ( ) ( ){ }| | : ,p R S p r s r R s S= ∈ ∈ , is such that 

( )| 0 or 1i jp r s = , for each  ( ) ( )| |i jp r s p R S∈ .  But as regulator designers, we are 
not required to obey this like dogma.  It just so happens that – by the C&A theorem – 
we must do it if we wish to minimize ( )H Z , the entropy associated with the resulting 
outcomes.   But  if  that  is  not  our  wish,  then  we  only  have  to  obey  the  rule  that

( )0 | 1i jp r s≤ ≤ .  Because of this, a regulator could be designed to maximize ( )H Z , 
or perhaps to attain some value in between the maximum and minimum.

As a general rule-of-thumb (meaning that important exceptions exist) the greater the 
number  of  outcomes  ultimately  selected,  the  greater  the  resulting  entropy  that  is 
associated with those outcomes.  Conversely – and again, as a general rule-of-thumb – 
the fewer the outcomes, the lower the entropy.  It is important to realize that this is not  
strictly  true,  and  plenty  of  counter  examples  are  easily  found.   For  example,  a 
regulator  that  produces  three  outcomes  { }, ,a b c ,  such  that  ( ) .80p a =  and 

( ) ( ) .10p b p c= =  has an entropy of  .8log.8 .1log.1 .1log.1 0.922− − − ≅  whereas a 

different  regulator  that  produces  only  two  outcomes  { },a b  such  that 
( ) ( ) .50p a p b= =  has  an  entropy  of  .5log.5 .5log.5 1.00− − = .   The  notion  of 

stability that is captured by the concept of minimized entropy is more complicated 
than can be described merely with the number of outcomes produced – what Ashby 
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called  Variety.  What is also important is the frequency with which these outcomes 
appear.   It  is  ironic  that  Ashby’s  notion  of  Variety turns  out  to  lack  the  variety 
requisite to the task it was meant to accomplish – the measurement of stability.  In any 
case, even though it is not strictly true, it’s true often enough to make the following 
discussion meaningful.  We will deal with the counter examples later.    

In  the  case  we  are  considering  there  are  a  total  of  9  possible  outcomes 
{ }, , , , , , , ,Z a b c d e f g h i= ,  and  any  regulator  that  maximized  ( )H Z  would  assign 

some sort of positive probability to each one of those outcomes.  On the other hand, 
any regulator that behaves according to some mapping :h S R→  – any mapping at all 
– must necessarily produce fewer than 9 outcomes, and thus (again, as a rule-of-thumb 
with exceptions very possible) a lower entropy.  To see why this is the case, consider 
the  following  three  arbitrary  mappings, { }: ,  for 1,2,3ih S R i→ ∈ ,  along  with  the 
outcomes they produce :

1.
1 2 3 4 5 6

1
2 3 1 2 4 3

s s s s s s
h r r r r r r↓ , produces the outcomes { }, , ,c d e i Z⊂

2.
1 2 3 4 5 6

2
3 3 3 3 3 3

s s s s s s
h r r r r r r↓ , produces the outcomes { }, , , , ,f d e b a i Z⊂

3.
1 2 3 4 5 6

3
4 1 1 3 4 2

s s s s s s
h r r r r r r↓ , produces the outcomes { }, , , ,a b d e i Z⊂

Notice that in each case, the number of outcomes actually produced is less than  Z , 
the total number than could be produced if we didn’t use a mapping, and, as already 
mentioned, when this sort of thing happens, the resulting entropy tends to be lower 
(with important exceptions).

These examples are meant to illustrate the gist of Ashby’s First Law: any model is 
better  than  no model.   Unfortunately,  these  examples  rely  on Ashby’s  concept  of 
variety – i.e. the number of distinct elements in a set – which as, already pointed out,  
lacks the variety requisite to the task before us.  In order to handle the exceptions, we 
need the entropy function; we proceed as follows:

Another type of entropy that we can calculate is that associated with the regulator’s 
responses  for  any given  column,  say the  column  associated  with  system behavior 

4s S∈ .  This is defined to as follows:

( ) ( ) ( )
4

4 4 4
1

| | log |i i
i

H R S s p r s p r s
=

= = − ∑

In the  most  general  case  we  have  that  ( )0 | 1i jp r s≤ ≤ ,  but  for  any  mapping 

:h S R→  it  must  be  the  case  that  ( )| 0 or 1i jp r s = ,  and  so,  by  the  property 
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described above, ( ) ( ) ( )
4

4 4 4
1

| | log | 0i i
i

H R S s p r s p r s
=

= = − =∑ .  Since this holds for 

each js S∈ , we have that,

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

| | | log | 0 0
S R S

j j i j i j j
j i j

H R S E H R S s p s p r s p r s p s
= = =

 
 = = = = =     

∑ ∑ ∑

A point I want to highlight here is that this  is true for  any mapping  :h S R→ , 
regardless of its impact on the entropy function.

Now,  in  his  discussion  of  his  Law  of  Requisite  Variety10,  Ashby  performs  the 
following derivation:

( ) ( ) ( ) ( ) ( ), | |H R S H S R H R H R S H S= + = +

( ) ( ) ( ) ( )| |H S R H R S H S H R= + −

( ) ( ) ( ) ( ) ( )| |H Z H Z R H R S H S H R≥ = + −

Where the last line in this derivation makes use of our assumption that there are no 
duplicate outcomes in any given row of the table, that is  ( ) ( )| |H S R H Z R= .  The 
purpose of this argument is three-fold.  First of all, it shows that there is an absolute 
minimum below which further reduction in ( )H Z  is impossible.  Secondly, it shows 
us that as regulator designers, we can have quite an impact on that lower limit.  And 
thirdly, it shows us two ways to lower that limit.  The first way is to use a mapping 

:h S R→ , which will set ( )| 0H R S = , and the second is to increase ( )H R .  

Ashby’s  Law of Requisite  Variety states that provided we have used a mapping 
:h S R→  that fixes ( )| 0H R S = , an assumption that extends the above derivation to 

the following line:

( ) ( ) ( )H Z H S H R≥ − ,

 then the only way to further lower the absolute limit on  ( )H Z  is to increase the 

value of ( )H R , the entropy associated with the regulator’s responses.  This is what I 
think of as Ashby’s  second law – the Law of Requisite Variety.   Actually,  and for 
reasons already mentioned, the term variety is insufficient to the task it was meant to 
perform, and so it would be more accurate to call Ashby’s second law the  Law of  
Requisite (Average) Surprise, because the quantity ( )log p r−  is considered a measure 

10http://pespmc1.vub.ac.be/Books/AshbyReqVar.pdf  , although my notation here is a little different from 
that used by Ashby.
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of the surprise we would experience at the observance of the execution of behavior 
r R∈  and so ( )H R  is the expected (average) value of that surprise11.

But what I am calling Ashby’s First Law is this fact that a mapping – any mapping 
(i.e. model) at all – will also improve the situation by lowering that limit.  I think of it 
as his first law because he uses it to derive the Law of Requisite Variety, that is, his 
second law.  I also think of it as the “Any-Port-In-A-Storm Theorem”, because this 
floor lowering effect can be accomplished with any model at all.

One additional caveat is in order regarding this notion of a floor or lower limit on 
( )H Z .  The fact that ( ) ( ) ( ) ( )|H Z H R S H S H R≥ + −  is an inequality means that 

we are ignorant about the actual location of ( )H Z  with respect to the floor.  Perhaps 
it is close, perhaps it is far away, we can’t really know.  What this means is that raising 
or lowering the floor might have absolutely no impact whatsoever on the actual value 
of ( )H Z  that is obtained for a given regulator.  Such is the nature of prerequisites and 
necessary conditions.  They make things possible, but they don’t make things certain. 
What this means is that we might very well regulate with a model ( ( )| 0H R S = ) and 

with maximum possible average surprise in the regulator ( ( )H R  as large as possible), 

and we might still end up with a high value for ( )H Z .  On the other hand, Ashby’s 
First  and Second Laws tell  us that  if  we don’t  handle these prerequisites,  we will 
certainly be stuck with a value that is at least ( ) ( ) ( ) ( )|H Z H R S H S H R≥ + − .

This caveat means that we have to clarify what we mean by any model is better than  
no model at all.  What will always be improved with a model (given the assumption 
that ( ) ( )| |H S R H Z R= )  – regardless of the model actually used – is that the floor 

on ( )H Z  will be lowered.  To the extent that this is a good thing, the situation has 

been improved.  However it does not mean, in general, that  ( )H Z  will actually be 
lowered.   Whether  that  actually  happens  will  depend  on the  particularities  of  the 
system and regulator in question.  Still,  ( )H Z  cannot be actually reduced until the 
capacity  for such reduction  has been created,  which  means  that  we have to  fulfill 
Ashby’s First and Second Laws.

The above caveat notwithstanding, it is easy to find examples, especially in human 
behavior, that appear to be explained by Ashby’s First Law.  In particular, it appears to 
explain why human beings can come to venerate and tenaciously defend certain belief 
systems which are otherwise completely incoherent with the workings of the world as 
determined through controlled  experiment.   Why does so-and-so believe  there is  a 
unicorn  living  in  his  attic?   Because  holding  such  a  belief  causes  an  increase  in 
stability (i.e. lowers the entropy) in some aspect of his life over what he would have in 
the absence of such a belief.  Any port in the storm.  What does he fight so vehemently 
against the evidence that contradicts his belief?  Because to give up that belief would 

11 http://en.wikipedia.org/wiki/Self-information
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leave him in an uncomfortable state of confusion regarding the mysterious sounds he 
hears coming from his attic late at night.  Any model is better than no model at all.

Seen  in  this  way,  Ashby’s  First  Law  has  important  implications  for  the  art  of 
persuasion.  If you have ever been frustrated by your failure to persuade someone to 
your  point of view despite  your  best  efforts to lay out what  appears  to  you to be 
overwhelmingly convincing evidence that you are right, then it could be because you 
are not addressing the deeper issue that the beliefs you are arguing against have a 
powerful, stabilizing effect on the life and well-being of the person who holds those 
beliefs and that your attempts to change those beliefs are threatening to destabilize the 
well-being of that person.  The obvious conclusion to draw here is that if you really 
want to change the belief, then you have to address this issue of stability.

Another part of human behavior that this theorem appears to explain is the existence 
of habits.  Try the following thought experiment.  Try to imagine what your life would 
look  like  if  you  had  no  habits  whatsoever.   Every  waking  moment  would  be  an 
unpredictable mess.  Some mornings you would wake up and eat breakfast, and some 
you’d wake up and glue all of your shoes to the ceiling.  Sometimes you might answer 
the phone when it rang and other times you’d try to see how fast you could count 
backwards from 53.  If you take a disciplined look at the things you do every day, or  
every week, or every time you eat lunch, you will see that many of them are pretty  
arbitrary  and  could  easily  be  swapped  for  different  ones  without  much  difficulty, 
except for the fact that you never really do that.  Habits are habits.  Arbitrary or not, if  
you went around changing too many of them your life could get pretty messy.

So we have these arbitrary habits simply because they are models and although they 
may be somewhat arbitrary and far from the best models we can find, by virtue of the 
fact that they help us keep things under control, we adopt them and resist giving them 
up.

Ashby’s First Law and the C&A theorem work together to form a team.  On the one 
hand, we know that if we want to regulate a system (solve a problem, open a lock), we 
need to have a model  of that  system (problem,  lock).   On the other hand,  it  isn’t  
always easy to find the best such model for the job at hand.  But Ashby’s First Law 
tells us that in some respects, it might not matter so long as we at least have some sort 
of model.  Clearly this is true in only a limited sense, and only if the alternative is no  
model whatsoever.  Once we have some sort of model, we can reasonably begin to 
consider whether it is the best we could have.  Of course, the widespread existence of 
conflicting  habits,  beliefs,  customs and cultural  practices  would suggest  that  many 
people just sort of stop after they get their hands on some kind of model.  The whole 
point  and  practice  of  Science,  of  course,  is  to  continually  try  to  improve  on  our 
models.
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Every Good Solution Must Be A Model Of The Problem It Solves
It has become something of a hobby for me to find metaphorical equivalents to the 

C&A theorem.  One objective of this paper is to offer what I believe are two of the 
most useful12:

1. Every Good Key Must Be A Model Of The Lock It Opens,

2. Every Good Solution Must Be A Model Of The Problem It Solves.

The first  metaphor has a luminous tangibility that makes the truth of the theorem 
utterly obvious.  A glance at any standard pin-tumbler key shows that the ridges of the 
key form a precise model of the contours that the lock’s inner pins must assume in 
order  to  liberate  the  tumbler  and allow it  to  turn  the  bolt,  as  can  be  seen  in  the 
following image13:

The second metaphor casts the C&A theorem as a fundamental theorem of problem 
solving.  Understood as such, the theorem equates the process of problem solving with 
the process of problem modeling and especially the process of problem re-modeling. 
As Herbert Simon observed, “Solving a problem simply means representing it so as to 
make the solution transparent.”14  In other words, the solution to the problem is the  
very model that renders the solution transparent.

Examples of this principle are abundant and easily found.  One ready example can 
be seen in these very pages, in the various ways that I have represented the search 
algorithm.   One  such  representation  was  the  “formal”  version,  which  was  almost 
certainly impossible to understand at first reading.  Another representation can be seen 
in  the  worked  examples  that  followed  the  formal  presentation.   These  worked 
examples can be seen as a control-model for the more formal presentation, and were 
almost  certainly  much  easier  for  you  to  follow,  and  (hopefully)  allowed  you  to 
understand  the  formal  presentation.   To  the  extent  that  understanding  the  formal 
representation was a problem, the worked examples (i.e. the control-model) were the 
solution to that problem.  

12 A few others: “Every successful species must be a model of its ecological niche”, “Every good manager 
must be a model of the company she manages,” “Every good replicator must be a model of itself.”  These 
versions cast the C&A theorem as a fundamental theorem of Biology, Management Science and Mimetics, 
respectively.  
13 This image is one of a series that can be found, along with a more detailed explanation of the mechanism 
at http://en.wikipedia.org/wiki/Pin_tumbler_lock
14 H.A.Simon, 1981, The Sciences of the artificial, 2nd edition, MIT Press, Cambridge, MA, as cited in 
Donald A. Norman, Things That Make Us Smart: Defending Human Attributes in the Age of the Machine, 
pg. 53, 1993, Basic Books, New York, NY.
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A plentiful source of especially clear examples of this principle can be found in the 
study of Linear Algebra, in particular the matrix reduction techniques used to solve 
systems of linear equations.  By representing such a system as an augmented matrix, 
finding the solution set is equivalent to the mechanical process of applying the 3 basic 
row operations, each of which effectively “re-models” the system, until the solution 
set is obvious.  This final representation of the original system of linear equations, i.e., 
the  final  model  of  that  system,  is  the  solution15.   Let’s  quickly  walk  through  an 
example to illustrate this process.  Consider the following system of linear equations:

1 2 3

1 2 3

1 2 3

8 3 11 25
5 6 13

2 5 28 75

x x x
x x x

x x x

− − = −
− − = −

− + + =

This system can be represented (modeled) with the following augmented matrix of 
coefficients:

8 3 11 25
5 1 6 13
2 5 28 75

− − − 
 − − − 
 − 

Recall that we are free to execute any of the following three basic row-operations on 
the  above  matrix  and  the  resulting  matrix  will  correspond  to  a  system  of  linear 
equations that has the exact same solution set as the original system:

1. Replace any row with a non-zero constant multiple of itself (we will 
represent this process in general as i jk R R⋅ → ),

2. Swap any two rows ( i jR R↔ ), and

3. Replace any row with a row constructed by adding it to a constant multiple 
of any other row ( i j jk R R R⋅ + → ).

Performing the first row operation as 1 1
1
8

R R→  on the above augmented matrix 

yields the following, what we can of think of as a re-modeled version of the original:
3 2511

8 8 81
5 1 6 13
2 5 28 75

− −− 
 − − − 
 − 

Recall that although this matrix appears to be a bit different from the original 
augmented matrix, it represents the following system of linear equations which has the 
exact same solutions set as the original system:

15 A representative text is Howard Anton and Chris Rorres, Elementary Linear Algebra, Applications  
Version, 9th edition, 2005, John Wiley & Sons, Hoboken, NJ.
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3 2511
8 8 81 2 3

1 2 3

1 2 3

5 6 13
2 5 28 75

x x x
x x x

x x x

− − = −
− − = −

− + + =

Because it has the same solution set, we can view it as just a different way to 
represent (model) the original system.

Continuing on with the new matrix:
3 2511

8 8 81
5 1 6 13
2 5 28 75

− −− 
 − − − 
 − 

,

we can execute the first row operation two more times in sequence as  2 2
1
5

R R→  

and  3 3
1

2
R R− → , performing the operation each time on the output matrix from the 

previous row operation.  Doing so yields the following:
3 2511

8 8 8

6 131
5 5 5

5 75
2 2

1
1
1 14

− −−

− −−

− −

 
 
 
 − 

Next, if we perform the third row operation two separate times as  1 2 2R R R− + →  
and 1 3 3R R R− + →  we get:

3 2511
8 8 8

7 7 21
40 40 40

17 101 275
8 8 8

1
0
0

− −−

− − −

 
 
 
  

Two executions of the first row operation as 2 2
40
7

R R→  and 3 38R R− →  yields:

3 2511
8 8 81

0 1 1 3
0 17 101 275

− −− 
 
 
  

Next,  we  execute  the  third  row  operation  twice  as  2 3 317R R R− + →  and 

2 1 1
3
8

R R R+ →  to produce: 

1 0 1 2
0 1 1 3
0 0 84 224

− − 
 
 
  
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Then we execute the first row operation as 2 2
1

84
R R→  to produce:

8
3

1 0 1 2
0 1 1 3
0 0 1

− − 
 
 
  

And  finally,  two  executions  of  the  third  row  operation  as  3 2 2R R R− + →  and 

3 1 1R R R+ →  yields:

2
3

1
3

8
3

1 0 0
0 1 0
0 0 1

 
 
 
  

Remember that at each step in this process, the resulting matrix represents a system 
of linear equations that has the exact same solution set as the original system.  Because 
of  this,  we  can  see  the  production  of  these  intermediate  matrices  as  sequence  of 
models of the original system and the whole process as a re-modeling process that 
produces the final reduced row echelon form (RREF) of the original matrix.  This final 
RREF matrix represents the following system of linear equations:

2
31 2 3 1

1
31 2 3 2

8
31 2 3 3

1 0 0
0 1 0
0 0 1

x x x x
x x x x
x x x x

⋅ + ⋅ + ⋅ = =
⋅ + ⋅ + ⋅ = =
⋅ + ⋅ + ⋅ = =

Again, this system has the same solution set as the original system, and thus can be 
thought of as a model of that system.  Furthermore, as was described by Simon, this 
final model represents the original problem in such a way as to make the solution 
completely obvious.  It other words, it is this model that is the solution to the original  
problem.

Of course, the preceding sort of analysis does not constitute a proof that “every good 
solution must be a model of the problem it solves.”  It is a plausibility argument only. 
One way to construct such a proof would be to piggy-back on Conant & Ashby’s 
original  argument  by  defining  a  problem in  terms  of,  say,  a  “scenario  repertoire” 

{ }1 2, ,..., SS s s s= ,  where the elements in  S  represent mutually exclusive scenarios 

that a given problem might present.  The proof, then, would otherwise be exactly the 
same as for the original theorem.  As solution designers, we would assume that we are 

equipped with a repertoire of possible responses  { }1 2, ,..., RR r r r=  that combine with 

the problematic scenarios in S  to produce outcomes in Z  according to some mapping
: R S Zψ × → .   From here  we  could  define  a  “good  solution”  either  as  one  that 

produces outcomes from  Z  so as to minimize ( )H Z , or more generally according to 
some specified preference ranking on those outcomes.  Of course, if we wish to take 
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the minimized entropy approach, we will also have to specify a probability distribution
( )p S .   The upshot here is  that  we don’t  really need a  proof  of  this  fundamental 

theorem of problem solving, beyond recognizing that any problem can be viewed as a 
system in need of regulation.  Conant and Ashby have already proven the theorem.

But they did so in the technical language of Systems and Regulators, which tends to 
bring to mind clunky images of Thermostats and Watt-Governors and if it is not your 
job to build or maintain such devices, you may tend to think that the C&A theorem is 
something you don’t really need to know about.  But everybody has to solve problems, 
and what could be more useful than a fundamental theorem of problem solving that 
tells us how to proceed to solve them?

What must we always do?

Make a model of the problem.

How do we know we have to do that?

Because we know that every good solution must be a model of the problem it solves. 
Whatever else we do, we must do at least that.

Of course, most of the time this approach will fail, at least on the first attempt, but 
only because there are many,  many ways to model any given problem, and only a 
relatively few will make the solution transparent.  But if after modeling the problem 
the solution is not transparent, then we also know that we have to come up with a 
different model.  How do we know this?  Again, because every good solution must be  
a model of the problem it solves.  If the model we currently have doesn’t solve the 
problem, then we must find some other way to model the problem.16  As illustrated 
above with the matrix reduction example, the C&A theorem shows us that the process 
of problem solving is equivalent to the process of problem modeling, and especially, 
the process of problem re-modeling.

16 For a compelling popular examination of the importance of problem representation to problem solving, 
see Donald A. Norman’s Things That Make Us Smart: Defending Human Attributes in the Age of the  
Machine.  1993.  Basic Books.  New York, NY.
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Conclusion

Have you ever stopped to notice all the models and representations we humans seem 
to  use?   A  little  disciplined  reflection  reveals  that  they  are  really  just  about 
everywhere.  And I’m not just talking about the obvious ones – e.g. the scale model 
buildings used by architects; the model airplanes, trains, boats and cars played with by 
children and hobbyists; the fashion models that show us how to dress, adorn ourselves, 
stand, walk and wear our hair; and of course the computer software we use to model 
everything from virtual desktops to entire virtual worlds.  I do mean at least those, of 
course, but I also mean the ones that may not be so obvious.  For example, consider a 
device as simple and as common as a grocery list, which is a model of the items you 
need from the store.  Every list, in fact, is such a model – a to-do list, a guest list, the 
index and table of contents for a book, a travel itinerary, a list of ingredients, etc.  Or 
consider a typical wall-mounted light switch which models the level of light in a room 
– i.e.  when it’s  in the “up” position the light  is  on (usually)  and when it’s  in the 
“down” position the light is off.   And I’ll bet that every morning as you prepare for 
your day – as you dress, comb your hair, shave, apply make-up, etc. – you make use of 
the model of your appearance that is reflected back to your eyes from the surface of a 
mirror.  I’m referring to all of the models we use.  They really seem to be everywhere. 
If you step back and take an objective look at our modern civilized way of life what 
you will see is a biological species that literally walks, drives, talks, eats, works and 
plays with models.  Here are a few more examples to illustrate the point:

• A city street map is a model of the actual city streets (thus, we walk and drive 
with models).

• Any spoken or written sentence is a model of the real-world events or objects 
that form the topic of that sentence (thus, we talk with models).

• A restaurant  menu is  a  model  of  the food the restaurant  prepares and sells 
(thus, we eat with models).

• An accounting register is a model of a company’s financial activity (thus, we 
work with models).

• A set of instructions for a game, such as Chess, are a model of that game (thus, 
we play with models).

And in order to really emphasize the point, here are several more examples (in no 
particular order) of common models that we either use deliberately or else depend 
on in some important way:

• A photograph is a model of the actual subject(s) depicted in the photograph.

• Your annual tax return is a model of your annual financial activity.

• An audio or video recording is a model of the actual sounds or images used to 
make the recording.
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• A job description is a model of an employee’s role and responsibilities in a 
company.

• A memory in your brain is a mental-model of some experience you lived.

• A piece of sheet music is a model of a given piece of music.

• A cooking recipe is a model of a process used to prepare a given dish.

• A library’s catalog is a model of the library’s inventory of documents.

• The DNA in your cells is a model of the process used to build your physical  
body.

• A template, such as a rubber stamp or a stencil, is a model of some pattern, 
form, block of text, etc.

• A business plan is a model of a business.

• Any given particular  performance of a habit  is a model  for all  of the other 
performances of that habit.

• A census is a model of a given population.

• A project  manager’s  work-plan is  a model  of the tasks to  be accomplished 
throughout a project.

• A representative sample is a model of the substance or population that provided 
the sample.

• An abstract symbol (e.g. a red cross, the word pencil) is a model of the actual 
thing,  idea  or  institution  represented  by  that  symbol  (e.g.  the  Red  Cross 
organization, an actual pencil).

• When light reflects off of any physical object it is structured into a model of 
that object.

• An ethical rule, such as “be kind to strangers” or “always tell the truth” is a 
(mental) model of some ideal behavior.

• Many children’s toys are models – cars, boats, airplanes, dolls, puppets, stuffed 
animals,  houses,  kitchen  appliances,  assembled  puzzles,  game  pieces  (e.g. 
Monopoly, Battle Ship, etc.).  Also, many children’s toys are used for making 
models – blocks, Legos, Lincoln Logs, erector sets, scale model kits, etc.

• A university chemistry textbook is a model of the basic chemistry knowledge 
to be learned by a chemistry student.

• A song written, for example, in the key of C major, is a model of the same song 
transposed, for example, to the key of F major.

• A written constitution is a model of an organization, such as a state, a club or 
an educational institution.

• A sculpture is a model of the artist’s idea for that sculpture.
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• A dead influenza virus, such as is used in a flu vaccine, is a model of a living 
influenza virus.

• An immune system antibody possesses a surface that is a model of an antigen’s 
surface.

• A fossilized organism is a model of the original organism.

• A quantitative measure of some attribute of a thing, (e.g. its length, weight, 
density, etc.) is a model of that attribute.

• Your reputation – i.e. the ideas, evaluations, memories, etc. that others have of 
you in their heads – is a (mental) model of you.  Your reputation can take on 
more  durable  forms  as  well,  for  example:  your  career  résumé,  your  credit 
report, your academic transcript, or your profile in an online social network 
(Facebook.com, Classmates.com, etc.)

• A “friendly hacker” of the kind hired by organizations in order to test their 
computer network security systems is a model of a real hacker of the kind who 
tries to break into such systems in order to steal data.

• A history book is a model of historical events.

• A key is a model of a lock’s keyhole.

• Honey bees use a kind of dance to model the location of a source of nectar17.

• A legal contract is a model of the behavior of those bound by the contract.

• An understanding  or  an  explanation  of  some  thing  or  phenomenon  (e.g.  a 
mechanic’s  understanding  of  the  way  a  combustion  engine  works  or  a 
physicist’s explanation of lightening) is a (mental) model of the actual thing or 
phenomenon.

• A  system  of  classification  (e.g.  the  periodic  table  of  the  elements,  or  the 
spectrum of colors) is a model of the classified items.

• In a ball and socket joint, such as in the human shoulder, the ball is a model of 
the socket.

• A (school, company,  home) fire-drill is a model of the events that ought to 
occur during an actual fire in order to ensure the safety of the participants in 
the drill during an actual fire.

• A U.S. one dollar bill is a model of one dollar’s worth of purchasing power.

• A belief system is a (mental) model of the way the world works. 

• A teacher’s course syllabus is a model of the course he or she will teach.

• A scientific theory or mathematical theorem, such as Einstein’s famous E=mc2 

or Darwin’s theory of evolution by natural selection is a model of some aspect 
of the way the real world works.

17 See James L. Gould’s paper “The Dance Language Controversy”, The Quarterly Review of Biology, 
1976, Vol. 51, No. 2, pp. 211 -244.
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I’ll stop there, but I’d like to point out that this list could go on and on.  The above 
list (a type of model)  is only a sampling (another type of model)  of the all of the  
models we humans use or on which we depend on a daily basis and it is only intended 
to give you a rough idea (e.g. a mental model) of the astonishing ubiquity of models 
throughout the human domain, which you can start to glimpse in this list, and which 
you can observe even more profoundly, now that you know what I’m talking about, by 
keeping your eyes open in your daily life.  We are literally  surrounded by models. 
They seem to be just about everywhere and we seem to use them deliberately (maps, 
menus, lists, etc.) or benefit from them passively (DNA, immune system antibodies, 
honey bee dances18) in nearly  everything we do.  They form a solid cornerstone of 
human civilization and a fundamental element of the human habitat, much as our air, 
water and food supplies.  We are constantly making and using them.  We start off 
playing with them as children (dolls, toy trucks, etc.) and then we grow up and use 
them in just  about everything we do from grocery shopping to  constructing office 
buildings.  In analogy to the terms  biosphere and  biophilia, (if you can excuse my 
mixing of the Latin and Greek roots)  we might  say that  we humans live within a 
modelosphere, and that we are modelophilic, i.e. in love with models19.

Such an important and widespread phenomenon cries out for an explanation.  What 
is the purpose of all this model-based behavior?  The answer can easily be seen when 
you go back over the above examples  and try to imagine  what  life  would be like 
without these models.   Imagine trying to shave or put on make-up in the morning 
without  a  mirror  to  help  you.   Imagine  trying  to  navigate  through  a  foreign  city 
without a map of that city.  Imagine trying to order a meal in a restaurant without a  
menu.  And when you conduct these kinds of thought experiments, be careful not to 
cheat.  It’s no fair asking the waiter for his memorized menu!  Without any sort of 
menu  you’d  have  to  just  guess  until  you  stumbled  onto  something  the  restaurant 
makes.  Of course, if there were no architectural models, business plans, or recipes 
then you wouldn’t even get that far because there would be no restaurants!  The key 
word here is complexity and these models help us to manage it.  As soon as behavior 
becomes much more complex than the basics open to  any animal – sleeping, eating, 
wandering  around,  etc.  –  then  we  pretty  much  need  some  sort  of  model  or 
representation in order to make it happen.

In the introduction I  referred to a distinction that  can be made between a good-
regulator  model  and  its  “technical  specification”,  or  control-model.   I  gave  the 
example of a recipe for roast-duck which is the control-model that a human being uses 
to become the dynamic good-regulator model for the system of ingredients and kitchen 
tools that produces the roast-duck.  The same reasoning applies to most of the models 

18 Our food supply is heavily dependent on honey bees and other insects for the pollination of the plants we 
eat.
19 It is not clear to me that there is much of a difference between what I am calling a “model” and what 
semioticians call a “sign”.  To the extent that these are the same, then what I am calling the Modelosphere 
is what semioticians call the Semiosphere, or “culture as a system of signs”.  See page 39 of Danesi, 
Marcel, Messages, Signs, And Meanings: A Basic Textbook in Semiotics and Communication Theory, 2004, 
Canadian Scholars' Press Inc, Toronto.  
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and representations we have just examined20, which is to say that these can be seen as 
technical specifications that we humans use to transform ourselves into good-regulator 
models of the systems that we hope to regulate with their help.  Furthermore, although 
the C&A theorem does not actually prove that these control-models are necessary to 
the regulation of these systems, the above sorts of thought experiments constitute a 
kind  of  inductive  argument  in  favor  of  this  position.   Furthermore,  given  the 
astonishing complexity of the Human Modelosphere (briefly surveyed above) we can 
now reasonably wonder about the sort of high-level technical specification (control-
model)  that  we  will  surely  need  in  order  to  become  (or  otherwise  build)  good-
regulators of  that very complicated system.  And although it is hard to imagine that 
those technical specifications could ever be squeezed into a single essay such as the 
one written by Conant and Ashby in 1970, it does seem compellingly obvious that 
these hypothetical  technical  specifications  will  simply have to  contain,  at  the  very 
least, the information their paper encapsulates.  The upshot here is that with respect to 
our attempts  to regulate  this Modelosphere,  the C&A theorem would appear to be 
very, very important.

Here we can return to the question raised in the introduction to this paper as to why 
the C&A theorem is not anywhere near as famous, say, as the Pythagorean Theorem. 
For that matter, why isn’t this theorem being taught as part of the standard science 
curriculum?  Why doesn’t it show up on tee-shirts and bumper stickers and in movies 
about super heroes?  After all, this system of control-models is already enormous and 
still growing and the C&A theorem explains much about what is required to regulate 
that system.  One would think that these facts would have struck themselves together 
like flint and steel and ignited a conflagration of fascination for models and everything 
that has to do with them.

That last statement needs to be explained.  Of course, in a sense, there is already 
such a widespread fascination with models.  That is exactly what I mean when I say 
that we humans are modelophilic.  We do love models.  They are everywhere precisely 
because on some level we are fascinated by them.  But what is missing is widespread 
high-level recognition and understanding of this fact.  In this sense we are like birds 
who fly, but who have no clue about Newton’s Laws or the Bernouilli Principle.  It is 
the lack of this higher level fascination that strikes me as odd, if not a little precarious. 
The Conant & Ashby Theorem is the conceptual key that could unlock the door to 
such a higher level fascination, and yet, few people have ever even heard of it.  

I won’t pretend to have any sort of final solution to this problem, but I can offer 
what I believe are a couple of useful insights.  For one thing, I believe that the theorem 
has suffered from poor public  relations.   This is  partly because the version of the 
theorem that Conant and Ashby proved relies on some mathematics that is probably a 
little  intimidating  to the lay-person, to  say the least.   My hope is  that  the simpler 
version of the theorem, presented earlier, will go a long way to solving that problem. 
Furthermore,  the  core  idea  of  the  theorem  is  couched  in  the  technical  jargon  of 
“systems” and “regulators”.   I  think the theorem would be a lot more famous if it 
could be couched in more concrete terms that more people can relate to, hence the 

20Excepting the likes of DNA, honeybee dances, etc. which we rely on but don't really use in the same way 
we use a grocery list.
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“Every good key...” and “Every good solution...” metaphors that I have offered in this 
paper.  

But public relations can only go so far.  I suspect that the Pythagorean Theorem 
never needed a public relations campaign in order to achieve its fame and it is always 
expressed in the language of algebra and geometry that probably frightens most adults 
despite its simplicity.  Of course the reason it has achieved its fame is because it has 
always been useful.  It is my hope that the search algorithm I have presented here will 
ultimately demonstrate the usefulness of this theorem to the point where it earns the 
status  of  a  kind  of  “Pythagorean  Theorem”  for,  at  least,  the  field  of  Operations 
Research and possibly other  fields  as well  (Game Theory,  Evolutionary Theory,  a 
General  Theory  of  Problem  Solving,  Semiotics,  Cognitive  Science,  Genetics, 
Memetics, etc.)  Once it has established its usefulness in this way, the next step will be 
for it to make its way into the standard science education curriculum, and after that, 
perhaps onto tee-shirts and bumper stickers.  

Whether it can actually fulfill such lofty ambitions remains to be established, but I 
hope I have left you intrigued by the possibility of such an outcome.  
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